Goto

Collaborating Authors

 Liu, Xinhui


What is the best model? Application-driven Evaluation for Large Language Models

arXiv.org Artificial Intelligence

General large language models enhanced with supervised fine-tuning and reinforcement learning from human feedback are increasingly popular in academia and industry as they generalize foundation models to various practical tasks in a prompt manner. To assist users in selecting the best model in practical application scenarios, i.e., choosing the model that meets the application requirements while minimizing cost, we introduce A-Eval, an application-driven LLMs evaluation benchmark for general large language models. First, we categorize evaluation tasks into five main categories and 27 sub-categories from a practical application perspective. Next, we construct a dataset comprising 678 question-and-answer pairs through a process of collecting, annotating, and reviewing. Then, we design an objective and effective evaluation method and evaluate a series of LLMs of different scales on A-Eval. Finally, we reveal interesting laws regarding model scale and task difficulty level and propose a feasible method for selecting the best model. Through A-Eval, we provide clear empirical and engineer guidance for selecting the best model, reducing barriers to selecting and using LLMs and promoting their application and development. Our benchmark is publicly available at https://github.com/UnicomAI/DataSet/tree/main/TestData/GeneralAbility.


UFDA: Universal Federated Domain Adaptation with Practical Assumptions

arXiv.org Artificial Intelligence

Conventional Federated Domain Adaptation (FDA) approaches usually demand an abundance of assumptions, which makes them significantly less feasible for real-world situations and introduces security hazards. This paper relaxes the assumptions from previous FDAs and studies a more practical scenario named Universal Federated Domain Adaptation (UFDA). It only requires the black-box model and the label set information of each source domain, while the label sets of different source domains could be inconsistent, and the target-domain label set is totally blind. Towards a more effective solution for our newly proposed UFDA scenario, we propose a corresponding methodology called Hot-Learning with Contrastive Label Disambiguation (HCLD). It particularly tackles UFDA's domain shifts and category gaps problems by using one-hot outputs from the black-box models of various source domains. Moreover, to better distinguish the shared and unknown classes, we further present a cluster-level strategy named Mutual-Voting Decision (MVD) to extract robust consensus knowledge across peer classes from both source and target domains. Extensive experiments on three benchmark datasets demonstrate that our method achieves comparable performance for our UFDA scenario with much fewer assumptions, compared to previous methodologies with comprehensive additional assumptions.