Liu, Xingchao
TripoSG: High-Fidelity 3D Shape Synthesis using Large-Scale Rectified Flow Models
Li, Yangguang, Zou, Zi-Xin, Liu, Zexiang, Wang, Dehu, Liang, Yuan, Yu, Zhipeng, Liu, Xingchao, Guo, Yuan-Chen, Liang, Ding, Ouyang, Wanli, Cao, Yan-Pei
Recent advancements in diffusion techniques have propelled image and video generation to unprece- dented levels of quality, significantly accelerating the deployment and application of generative AI. However, 3D shape generation technology has so far lagged behind, constrained by limitations in 3D data scale, complexity of 3D data process- ing, and insufficient exploration of advanced tech- niques in the 3D domain. Current approaches to 3D shape generation face substantial challenges in terms of output quality, generalization capa- bility, and alignment with input conditions. We present TripoSG, a new streamlined shape diffu- sion paradigm capable of generating high-fidelity 3D meshes with precise correspondence to input images. Specifically, we propose: 1) A large-scale rectified flow transformer for 3D shape generation, achieving state-of-the-art fidelity through training on extensive, high-quality data. 2) A hybrid supervised training strategy combining SDF, normal, and eikonal losses for 3D VAE, achieving high- quality 3D reconstruction performance. 3) A data processing pipeline to generate 2 million high- quality 3D samples, highlighting the crucial rules for data quality and quantity in training 3D gen- erative models. Through comprehensive experi- ments, we have validated the effectiveness of each component in our new framework. The seamless integration of these parts has enabled TripoSG to achieve state-of-the-art performance in 3D shape generation. The resulting 3D shapes exhibit en- hanced detail due to high-resolution capabilities and demonstrate exceptional fidelity to input im- ages. Moreover, TripoSG demonstrates improved versatility in generating 3D models from diverse image styles and contents, showcasing strong gen- eralization capabilities. To foster progress and innovation in the field of 3D generation, we will make our model publicly available.
Janus-Pro: Unified Multimodal Understanding and Generation with Data and Model Scaling
Chen, Xiaokang, Wu, Zhiyu, Liu, Xingchao, Pan, Zizheng, Liu, Wen, Xie, Zhenda, Yu, Xingkai, Ruan, Chong
In this work, we introduce Janus-Pro, an advanced version of the previous work Janus. Specifically, Janus-Pro incorporates (1) an optimized training strategy, (2) expanded training data, and (3) scaling to larger model size. With these improvements, Janus-Pro achieves significant advancements in both multimodal understanding and text-to-image instruction-following capabilities, while also enhancing the stability of text-to-image generation. We hope this work will inspire further exploration in the field. Code and models are publicly available.
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
DeepSeek-AI, null, Guo, Daya, Yang, Dejian, Zhang, Haowei, Song, Junxiao, Zhang, Ruoyu, Xu, Runxin, Zhu, Qihao, Ma, Shirong, Wang, Peiyi, Bi, Xiao, Zhang, Xiaokang, Yu, Xingkai, Wu, Yu, Wu, Z. F., Gou, Zhibin, Shao, Zhihong, Li, Zhuoshu, Gao, Ziyi, Liu, Aixin, Xue, Bing, Wang, Bingxuan, Wu, Bochao, Feng, Bei, Lu, Chengda, Zhao, Chenggang, Deng, Chengqi, Zhang, Chenyu, Ruan, Chong, Dai, Damai, Chen, Deli, Ji, Dongjie, Li, Erhang, Lin, Fangyun, Dai, Fucong, Luo, Fuli, Hao, Guangbo, Chen, Guanting, Li, Guowei, Zhang, H., Bao, Han, Xu, Hanwei, Wang, Haocheng, Ding, Honghui, Xin, Huajian, Gao, Huazuo, Qu, Hui, Li, Hui, Guo, Jianzhong, Li, Jiashi, Wang, Jiawei, Chen, Jingchang, Yuan, Jingyang, Qiu, Junjie, Li, Junlong, Cai, J. L., Ni, Jiaqi, Liang, Jian, Chen, Jin, Dong, Kai, Hu, Kai, Gao, Kaige, Guan, Kang, Huang, Kexin, Yu, Kuai, Wang, Lean, Zhang, Lecong, Zhao, Liang, Wang, Litong, Zhang, Liyue, Xu, Lei, Xia, Leyi, Zhang, Mingchuan, Zhang, Minghua, Tang, Minghui, Li, Meng, Wang, Miaojun, Li, Mingming, Tian, Ning, Huang, Panpan, Zhang, Peng, Wang, Qiancheng, Chen, Qinyu, Du, Qiushi, Ge, Ruiqi, Zhang, Ruisong, Pan, Ruizhe, Wang, Runji, Chen, R. J., Jin, R. L., Chen, Ruyi, Lu, Shanghao, Zhou, Shangyan, Chen, Shanhuang, Ye, Shengfeng, Wang, Shiyu, Yu, Shuiping, Zhou, Shunfeng, Pan, Shuting, Li, S. S., Zhou, Shuang, Wu, Shaoqing, Ye, Shengfeng, Yun, Tao, Pei, Tian, Sun, Tianyu, Wang, T., Zeng, Wangding, Zhao, Wanjia, Liu, Wen, Liang, Wenfeng, Gao, Wenjun, Yu, Wenqin, Zhang, Wentao, Xiao, W. L., An, Wei, Liu, Xiaodong, Wang, Xiaohan, Chen, Xiaokang, Nie, Xiaotao, Cheng, Xin, Liu, Xin, Xie, Xin, Liu, Xingchao, Yang, Xinyu, Li, Xinyuan, Su, Xuecheng, Lin, Xuheng, Li, X. Q., Jin, Xiangyue, Shen, Xiaojin, Chen, Xiaosha, Sun, Xiaowen, Wang, Xiaoxiang, Song, Xinnan, Zhou, Xinyi, Wang, Xianzu, Shan, Xinxia, Li, Y. K., Wang, Y. Q., Wei, Y. X., Zhang, Yang, Xu, Yanhong, Li, Yao, Zhao, Yao, Sun, Yaofeng, Wang, Yaohui, Yu, Yi, Zhang, Yichao, Shi, Yifan, Xiong, Yiliang, He, Ying, Piao, Yishi, Wang, Yisong, Tan, Yixuan, Ma, Yiyang, Liu, Yiyuan, Guo, Yongqiang, Ou, Yuan, Wang, Yuduan, Gong, Yue, Zou, Yuheng, He, Yujia, Xiong, Yunfan, Luo, Yuxiang, You, Yuxiang, Liu, Yuxuan, Zhou, Yuyang, Zhu, Y. X., Xu, Yanhong, Huang, Yanping, Li, Yaohui, Zheng, Yi, Zhu, Yuchen, Ma, Yunxian, Tang, Ying, Zha, Yukun, Yan, Yuting, Ren, Z. Z., Ren, Zehui, Sha, Zhangli, Fu, Zhe, Xu, Zhean, Xie, Zhenda, Zhang, Zhengyan, Hao, Zhewen, Ma, Zhicheng, Yan, Zhigang, Wu, Zhiyu, Gu, Zihui, Zhu, Zijia, Liu, Zijun, Li, Zilin, Xie, Ziwei, Song, Ziyang, Pan, Zizheng, Huang, Zhen, Xu, Zhipeng, Zhang, Zhongyu, Zhang, Zhen
We introduce our first-generation reasoning models, DeepSeek-R1-Zero and DeepSeek-R1. DeepSeek-R1-Zero, a model trained via large-scale reinforcement learning (RL) without supervised fine-tuning (SFT) as a preliminary step, demonstrates remarkable reasoning capabilities. Through RL, DeepSeek-R1-Zero naturally emerges with numerous powerful and intriguing reasoning behaviors. However, it encounters challenges such as poor readability, and language mixing. To address these issues and further enhance reasoning performance, we introduce DeepSeek-R1, which incorporates multi-stage training and cold-start data before RL. DeepSeek-R1 achieves performance comparable to OpenAI-o1-1217 on reasoning tasks. To support the research community, we open-source DeepSeek-R1-Zero, DeepSeek-R1, and six dense models (1.5B, 7B, 8B, 14B, 32B, 70B) distilled from DeepSeek-R1 based on Qwen and Llama.
DeepSeek-V3 Technical Report
DeepSeek-AI, null, Liu, Aixin, Feng, Bei, Xue, Bing, Wang, Bingxuan, Wu, Bochao, Lu, Chengda, Zhao, Chenggang, Deng, Chengqi, Zhang, Chenyu, Ruan, Chong, Dai, Damai, Guo, Daya, Yang, Dejian, Chen, Deli, Ji, Dongjie, Li, Erhang, Lin, Fangyun, Dai, Fucong, Luo, Fuli, Hao, Guangbo, Chen, Guanting, Li, Guowei, Zhang, H., Bao, Han, Xu, Hanwei, Wang, Haocheng, Zhang, Haowei, Ding, Honghui, Xin, Huajian, Gao, Huazuo, Li, Hui, Qu, Hui, Cai, J. L., Liang, Jian, Guo, Jianzhong, Ni, Jiaqi, Li, Jiashi, Wang, Jiawei, Chen, Jin, Chen, Jingchang, Yuan, Jingyang, Qiu, Junjie, Li, Junlong, Song, Junxiao, Dong, Kai, Hu, Kai, Gao, Kaige, Guan, Kang, Huang, Kexin, Yu, Kuai, Wang, Lean, Zhang, Lecong, Xu, Lei, Xia, Leyi, Zhao, Liang, Wang, Litong, Zhang, Liyue, Li, Meng, Wang, Miaojun, Zhang, Mingchuan, Zhang, Minghua, Tang, Minghui, Li, Mingming, Tian, Ning, Huang, Panpan, Wang, Peiyi, Zhang, Peng, Wang, Qiancheng, Zhu, Qihao, Chen, Qinyu, Du, Qiushi, Chen, R. J., Jin, R. L., Ge, Ruiqi, Zhang, Ruisong, Pan, Ruizhe, Wang, Runji, Xu, Runxin, Zhang, Ruoyu, Chen, Ruyi, Li, S. S., Lu, Shanghao, Zhou, Shangyan, Chen, Shanhuang, Wu, Shaoqing, Ye, Shengfeng, Ye, Shengfeng, Ma, Shirong, Wang, Shiyu, Zhou, Shuang, Yu, Shuiping, Zhou, Shunfeng, Pan, Shuting, Wang, T., Yun, Tao, Pei, Tian, Sun, Tianyu, Xiao, W. L., Zeng, Wangding, Zhao, Wanjia, An, Wei, Liu, Wen, Liang, Wenfeng, Gao, Wenjun, Yu, Wenqin, Zhang, Wentao, Li, X. Q., Jin, Xiangyue, Wang, Xianzu, Bi, Xiao, Liu, Xiaodong, Wang, Xiaohan, Shen, Xiaojin, Chen, Xiaokang, Zhang, Xiaokang, Chen, Xiaosha, Nie, Xiaotao, Sun, Xiaowen, Wang, Xiaoxiang, Cheng, Xin, Liu, Xin, Xie, Xin, Liu, Xingchao, Yu, Xingkai, Song, Xinnan, Shan, Xinxia, Zhou, Xinyi, Yang, Xinyu, Li, Xinyuan, Su, Xuecheng, Lin, Xuheng, Li, Y. K., Wang, Y. Q., Wei, Y. X., Zhu, Y. X., Zhang, Yang, Xu, Yanhong, Xu, Yanhong, Huang, Yanping, Li, Yao, Zhao, Yao, Sun, Yaofeng, Li, Yaohui, Wang, Yaohui, Yu, Yi, Zheng, Yi, Zhang, Yichao, Shi, Yifan, Xiong, Yiliang, He, Ying, Tang, Ying, Piao, Yishi, Wang, Yisong, Tan, Yixuan, Ma, Yiyang, Liu, Yiyuan, Guo, Yongqiang, Wu, Yu, Ou, Yuan, Zhu, Yuchen, Wang, Yuduan, Gong, Yue, Zou, Yuheng, He, Yujia, Zha, Yukun, Xiong, Yunfan, Ma, Yunxian, Yan, Yuting, Luo, Yuxiang, You, Yuxiang, Liu, Yuxuan, Zhou, Yuyang, Wu, Z. F., Ren, Z. Z., Ren, Zehui, Sha, Zhangli, Fu, Zhe, Xu, Zhean, Huang, Zhen, Zhang, Zhen, Xie, Zhenda, Zhang, Zhengyan, Hao, Zhewen, Gou, Zhibin, Ma, Zhicheng, Yan, Zhigang, Shao, Zhihong, Xu, Zhipeng, Wu, Zhiyu, Zhang, Zhongyu, Li, Zhuoshu, Gu, Zihui, Zhu, Zijia, Liu, Zijun, Li, Zilin, Xie, Ziwei, Song, Ziyang, Gao, Ziyi, Pan, Zizheng
We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B total parameters with 37B activated for each token. To achieve efficient inference and cost-effective training, DeepSeek-V3 adopts Multi-head Latent Attention (MLA) and DeepSeekMoE architectures, which were thoroughly validated in DeepSeek-V2. Furthermore, DeepSeek-V3 pioneers an auxiliary-loss-free strategy for load balancing and sets a multi-token prediction training objective for stronger performance. We pre-train DeepSeek-V3 on 14.8 trillion diverse and high-quality tokens, followed by Supervised Fine-Tuning and Reinforcement Learning stages to fully harness its capabilities. Comprehensive evaluations reveal that DeepSeek-V3 outperforms other open-source models and achieves performance comparable to leading closed-source models. Despite its excellent performance, DeepSeek-V3 requires only 2.788M H800 GPU hours for its full training. In addition, its training process is remarkably stable. Throughout the entire training process, we did not experience any irrecoverable loss spikes or perform any rollbacks.
DeepSeek-VL2: Mixture-of-Experts Vision-Language Models for Advanced Multimodal Understanding
Wu, Zhiyu, Chen, Xiaokang, Pan, Zizheng, Liu, Xingchao, Liu, Wen, Dai, Damai, Gao, Huazuo, Ma, Yiyang, Wu, Chengyue, Wang, Bingxuan, Xie, Zhenda, Wu, Yu, Hu, Kai, Wang, Jiawei, Sun, Yaofeng, Li, Yukun, Piao, Yishi, Guan, Kang, Liu, Aixin, Xie, Xin, You, Yuxiang, Dong, Kai, Yu, Xingkai, Zhang, Haowei, Zhao, Liang, Wang, Yisong, Ruan, Chong
We present DeepSeek-VL2, an advanced series of large Mixture-of-Experts (MoE) Vision-Language Models that significantly improves upon its predecessor, DeepSeek-VL, through two key major upgrades. For the vision component, we incorporate a dynamic tiling vision encoding strategy designed for processing high-resolution images with different aspect ratios. For the language component, we leverage DeepSeekMoE models with the Multi-head Latent Attention mechanism, which compresses Key-Value cache into latent vectors, to enable efficient inference and high throughput. Trained on an improved vision-language dataset, DeepSeek-VL2 demonstrates superior capabilities across various tasks, including but not limited to visual question answering, optical character recognition, document/table/chart understanding, and visual grounding. Our model series is composed of three variants: DeepSeek-VL2-Tiny, DeepSeek-VL2-Small and DeepSeek-VL2, with 1.0B, 2.8B and 4.5B activated parameters respectively. DeepSeek-VL2 achieves competitive or state-of-the-art performance with similar or fewer activated parameters compared to existing open-source dense and MoE-based models. Codes and pre-trained models are publicly accessible at https://github.com/deepseek-ai/DeepSeek-VL2.
JanusFlow: Harmonizing Autoregression and Rectified Flow for Unified Multimodal Understanding and Generation
Ma, Yiyang, Liu, Xingchao, Chen, Xiaokang, Liu, Wen, Wu, Chengyue, Wu, Zhiyu, Pan, Zizheng, Xie, Zhenda, Zhang, Haowei, yu, Xingkai, Zhao, Liang, Wang, Yisong, Liu, Jiaying, Ruan, Chong
JanusFlow introduces a minimalist architecture that integrates autoregressive language models with rectified flow, a state-of-the-art method in generative modeling. Our key finding demonstrates that rectified flow can be straightforwardly trained within the large language model framework, eliminating the need for complex architectural modifications. To further improve the performance of our unified model, we adopt two key strategies: (i) decoupling the understanding and generation encoders, and (ii) aligning their representations during unified training. Extensive experiments show that JanusFlow achieves comparable or superior performance to specialized models in their respective domains, while significantly outperforming existing unified approaches across standard benchmarks. This work represents a step toward more efficient and versatile vision-language models.
Janus: Decoupling Visual Encoding for Unified Multimodal Understanding and Generation
Wu, Chengyue, Chen, Xiaokang, Wu, Zhiyu, Ma, Yiyang, Liu, Xingchao, Pan, Zizheng, Liu, Wen, Xie, Zhenda, Yu, Xingkai, Ruan, Chong, Luo, Ping
In this paper, we introduce Janus, an autoregressive framework that unifies multimodal understanding and generation. Prior research often relies on a single visual encoder for both tasks, such as Chameleon. However, due to the differing levels of information granularity required by multimodal understanding and generation, this approach can lead to suboptimal performance, particularly in multimodal understanding. To address this issue, we decouple visual encoding into separate pathways, while still leveraging a single, unified transformer architecture for processing. The decoupling not only alleviates the conflict between the visual encoder's roles in understanding and generation, but also enhances the framework's flexibility. For instance, both the multimodal understanding and generation components can independently select their most suitable encoding methods. Experiments show that Janus surpasses previous unified model and matches or exceeds the performance of task-specific models. The simplicity, high flexibility, and effectiveness of Janus make it a strong candidate for next-generation unified multimodal models.
PeRFlow: Piecewise Rectified Flow as Universal Plug-and-Play Accelerator
Yan, Hanshu, Liu, Xingchao, Pan, Jiachun, Liew, Jun Hao, Liu, Qiang, Feng, Jiashi
We present Piecewise Rectified Flow (PeRFlow), a flow-based method for accelerating diffusion models. PeRFlow divides the sampling process of generative flows into several time windows and straightens the trajectories in each interval via the reflow operation, thereby approaching piecewise linear flows. PeRFlow achieves superior performance in a few-step generation. Moreover, through dedicated parameterizations, the PeRFlow models inherit knowledge from the pretrained diffusion models. Thus, the training converges fast and the obtained models show advantageous transfer ability, serving as universal plug-and-play accelerators that are compatible with various workflows based on the pre-trained diffusion models. Codes for training and inference are publicly released. https://github.com/magic-research/piecewise-rectified-flow
Language Rectified Flow: Advancing Diffusion Language Generation with Probabilistic Flows
Zhang, Shujian, Wu, Lemeng, Gong, Chengyue, Liu, Xingchao
Recent works have demonstrated success in controlling sentence attributes ($e.g.$, sentiment) and structure ($e.g.$, syntactic structure) based on the diffusion language model. A key component that drives theimpressive performance for generating high-quality samples from noise is iteratively denoise for thousands of steps. While beneficial, the complexity of starting from the noise and the learning steps has limited its implementation to many NLP real-world applications. This paper proposes Language Rectified Flow ({\ours}). Our method is based on the reformulation of the standard probabilistic flow models. Language rectified flow learns (neural) ordinary differential equation models to transport between the source distribution and the target distribution, hence providing a unified and effective solution to generative modeling and domain transfer. From the source distribution, our language rectified flow yields fast simulation and effectively decreases the inference time. Experiments on three challenging fine-grained control tasks and multiple high-quality text editing show that our method consistently outperforms its baselines. Extensive experiments and ablation studies demonstrate that our method can be general, effective, and beneficial for many NLP tasks.
AdaFlow: Imitation Learning with Variance-Adaptive Flow-Based Policies
Hu, Xixi, Liu, Bo, Liu, Xingchao, Liu, Qiang
Diffusion-based imitation learning improves Behavioral Cloning (BC) on multi-modal decision-making, but comes at the cost of significantly slower inference due to the recursion in the diffusion process. It urges us to design efficient policy generators while keeping the ability to generate diverse actions. To address this challenge, we propose AdaFlow, an imitation learning framework based on flow-based generative modeling. AdaFlow represents the policy with state-conditioned ordinary differential equations (ODEs), which are known as probability flows. We reveal an intriguing connection between the conditional variance of their training loss and the discretization error of the ODEs. With this insight, we propose a variance-adaptive ODE solver that can adjust its step size in the inference stage, making AdaFlow an adaptive decision-maker, offering rapid inference without sacrificing diversity. Interestingly, it automatically reduces to a one-step generator when the action distribution is uni-modal. Our comprehensive empirical evaluation shows that AdaFlow achieves high performance across all dimensions, including success rate, behavioral diversity, and inference speed. The code is available at https://github.com/hxixixh/AdaFlow