Liu, Xiaohui
Estimating and Mitigating the Congestion Effect of Curbside Pick-ups and Drop-offs: A Causal Inference Approach
Liu, Xiaohui, Qian, Sean, Teo, Hock-Hai, Ma, Wei
Curb space is one of the busiest areas in urban road networks. Especially in recent years, the rapid increase of ride-hailing trips and commercial deliveries has induced massive pick-ups/drop-offs (PUDOs), which occupy the limited curb space that was designed and built decades ago. These PUDOs could jam curbside utilization and disturb the mainline traffic flow, evidently leading to significant negative societal externalities. However, there is a lack of an analytical framework that rigorously quantifies and mitigates the congestion effect of PUDOs in the system view, particularly with little data support and involvement of confounding effects. To bridge this research gap, this paper develops a rigorous causal inference approach to estimate the congestion effect of PUDOs on general regional networks. A causal graph is set to represent the spatio-temporal relationship between PUDOs and traffic speed, and a double and separated machine learning (DSML) method is proposed to quantify how PUDOs affect traffic congestion. Additionally, a re-routing formulation is developed and solved to encourage passenger walking and traffic flow re-routing to achieve system optimization. Numerical experiments are conducted using real-world data in the Manhattan area. On average, 100 additional units of PUDOs in a region could reduce the traffic speed by 3.70 and 4.54 mph on weekdays and weekends, respectively. Re-routing trips with PUDOs on curb space could respectively reduce the system-wide total travel time by 2.44% and 2.12% in Midtown and Central Park on weekdays. Sensitivity analysis is also conducted to demonstrate the effectiveness and robustness of the proposed framework.
AcademicGPT: Empowering Academic Research
Wei, Shufa, Xu, Xiaolong, Qi, Xianbiao, Yin, Xi, Xia, Jun, Ren, Jingyi, Tang, Peijun, Zhong, Yuxiang, Chen, Yihao, Ren, Xiaoqin, Liang, Yuxin, Huang, Liankai, Xie, Kai, Gui, Weikang, Tan, Wei, Sun, Shuanglong, Hu, Yongquan, Liu, Qinxian, Li, Nanjin, Dai, Chihao, Wang, Lihua, Liu, Xiaohui, Zhang, Lei, Xie, Yutao
Large Language Models (LLMs) have demonstrated exceptional capabilities across various natural language processing tasks. Yet, many of these advanced LLMs are tailored for broad, general-purpose applications. In this technical report, we introduce AcademicGPT, designed specifically to empower academic research. AcademicGPT is a continual training model derived from LLaMA2-70B. Our training corpus mainly consists of academic papers, thesis, content from some academic domain, high-quality Chinese data and others. While it may not be extensive in data scale, AcademicGPT marks our initial venture into a domain-specific GPT tailored for research area. We evaluate AcademicGPT on several established public benchmarks such as MMLU and CEval, as well as on some specialized academic benchmarks like PubMedQA, SCIEval, and our newly-created ComputerScienceQA, to demonstrate its ability from general knowledge ability, to Chinese ability, and to academic ability. Building upon AcademicGPT's foundation model, we also developed several applications catered to the academic area, including General Academic Question Answering, AI-assisted Paper Reading, Paper Review, and AI-assisted Title and Abstract Generation.
Intelligent Data Analysis: Reasoning About Data
Berthold, Michael, Cohen, Paul R., Liu, Xiaohui
The Second International Symposium on Intelligent Data Analysis (IDA97) was held at Birkbeck College, University of London, on 4 to 6 August 1997. The main theme of IDA97 was to reason about how to analyze data,perhaps as human analysts do, by exploiting many methods from diverse disciplines. This article outlines several key issues and challenges, discusses how they were addressed at the conference, and presents opportunities for further work in the field.