Goto

Collaborating Authors

 Liu, Wenbin


From Histopathology Images to Cell Clouds: Learning Slide Representations with Hierarchical Cell Transformer

arXiv.org Artificial Intelligence

It is clinically crucial and potentially very beneficial to be able to analyze and model directly the spatial distributions of cells in histopathology whole slide images (WSI). However, most existing WSI datasets lack cell-level annotations, owing to the extremely high cost over giga-pixel images. Thus, it remains an open question whether deep learning models can directly and effectively analyze WSIs from the semantic aspect of cell distributions. In this work, we construct a large-scale WSI dataset with more than 5 billion cell-level annotations, termed WSI-Cell5B, and a novel hierarchical Cell Cloud Transformer (CCFormer) to tackle these challenges. WSI-Cell5B is based on 6,998 WSIs of 11 cancers from The Cancer Genome Atlas Program, and all WSIs are annotated per cell by coordinates and types. To the best of our knowledge, WSI-Cell5B is the first WSI-level large-scale dataset integrating cell-level annotations. On the other hand, CCFormer formulates the collection of cells in each WSI as a cell cloud and models cell spatial distribution. Specifically, Neighboring Information Embedding (NIE) is proposed to characterize the distribution of cells within the neighborhood of each cell, and a novel Hierarchical Spatial Perception (HSP) module is proposed to learn the spatial relationship among cells in a bottom-up manner. The clinical analysis indicates that WSI-Cell5B can be used to design clinical evaluation metrics based on counting cells that effectively assess the survival risk of patients. Extensive experiments on survival prediction and cancer staging show that learning from cell spatial distribution alone can already achieve state-of-the-art (SOTA) performance, i.e., CCFormer strongly outperforms other competing methods.


From Incomplete Coarse-Grained to Complete Fine-Grained: A Two-Stage Framework for Spatiotemporal Data Reconstruction

arXiv.org Artificial Intelligence

With the rapid development of various sensing devices, spatiotemporal data is becoming increasingly important nowadays. However, due to sensing costs and privacy concerns, the collected data is often incomplete and coarse-grained, limiting its application to specific tasks. To address this, we propose a new task called spatiotemporal data reconstruction, which aims to infer complete and fine-grained data from sparse and coarse-grained observations. To achieve this, we introduce a two-stage data inference framework, DiffRecon, grounded in the Denoising Diffusion Probabilistic Model (DDPM). In the first stage, we present Diffusion-C, a diffusion model augmented by ST-PointFormer, a powerful encoder designed to leverage the spatial correlations between sparse data points. Following this, the second stage introduces Diffusion-F, which incorporates the proposed T-PatternNet to capture the temporal pattern within sequential data. Together, these two stages form an end-to-end framework capable of inferring complete, fine-grained data from incomplete and coarse-grained observations. We conducted experiments on multiple real-world datasets to demonstrate the superiority of our method.


Cell Selection with Deep Reinforcement Learning in Sparse Mobile Crowdsensing

arXiv.org Artificial Intelligence

Sparse Mobile CrowdSensing (MCS) is a novel MCS paradigm where data inference is incorporated into the MCS process for reducing sensing costs while its quality is guaranteed. Since the sensed data from different cells (sub-areas) of the target sensing area will probably lead to diverse levels of inference data quality, cell selection (i.e., choose which cells of the target area to collect sensed data from participants) is a critical issue that will impact the total amount of data that requires to be collected (i.e., data collection costs) for ensuring a certain level of quality. To address this issue, this paper proposes a Deep Reinforcement learning based Cell selection mechanism for Sparse MCS, called DR-Cell. First, we properly model the key concepts in reinforcement learning including state, action, and reward, and then propose to use a deep recurrent Q-network for learning the Q-function that can help decide which cell is a better choice under a certain state during cell selection. Furthermore, we leverage the transfer learning techniques to reduce the amount of data required for training the Q-function if there are multiple correlated MCS tasks that need to be conducted in the same target area. Experiments on various real-life sensing datasets verify the effectiveness of DR-Cell over the state-of-the-art cell selection mechanisms in Sparse MCS by reducing up to 15% of sensed cells with the same data inference quality guarantee.