Not enough data to create a plot.
Try a different view from the menu above.
Liu, Wei
Feynman-Kac Operator Expectation Estimator
Li, Jingyuan, Liu, Wei
The Feynman-Kac Operator Expectation Estimator (FKEE) is an innovative method for estimating the target Mathematical Expectation $\mathbb{E}_{X\sim P}[f(X)]$ without relying on a large number of samples, in contrast to the commonly used Markov Chain Monte Carlo (MCMC) Expectation Estimator. FKEE comprises diffusion bridge models and approximation of the Feynman-Kac operator. The key idea is to use the solution to the Feynmann-Kac equation at the initial time $u(x_0,0)=\mathbb{E}[f(X_T)|X_0=x_0]$. We use Physically Informed Neural Networks (PINN) to approximate the Feynman-Kac operator, which enables the incorporation of diffusion bridge models into the expectation estimator and significantly improves the efficiency of using data while substantially reducing the variance. Diffusion Bridge Model is a more general MCMC method. In order to incorporate extensive MCMC algorithms, we propose a new diffusion bridge model based on the Minimum Wasserstein distance. This diffusion bridge model is universal and reduces the training time of the PINN. FKEE also reduces the adverse impact of the curse of dimensionality and weakens the assumptions on the distribution of $X$ and performance function $f$ in the general MCMC expectation estimator. The theoretical properties of this universal diffusion bridge model are also shown. Finally, we demonstrate the advantages and potential applications of this method through various concrete experiments, including the challenging task of approximating the partition function in the random graph model such as the Ising model.
Sequential Manipulation Against Rank Aggregation: Theory and Algorithm
Ma, Ke, Xu, Qianqian, Zeng, Jinshan, Liu, Wei, Cao, Xiaochun, Sun, Yingfei, Huang, Qingming
Rank aggregation with pairwise comparisons is widely encountered in sociology, politics, economics, psychology, sports, etc . Given the enormous social impact and the consequent incentives, the potential adversary has a strong motivation to manipulate the ranking list. However, the ideal attack opportunity and the excessive adversarial capability cause the existing methods to be impractical. To fully explore the potential risks, we leverage an online attack on the vulnerable data collection process. Since it is independent of rank aggregation and lacks effective protection mechanisms, we disrupt the data collection process by fabricating pairwise comparisons without knowledge of the future data or the true distribution. From the game-theoretic perspective, the confrontation scenario between the online manipulator and the ranker who takes control of the original data source is formulated as a distributionally robust game that deals with the uncertainty of knowledge. Then we demonstrate that the equilibrium in the above game is potentially favorable to the adversary by analyzing the vulnerability of the sampling algorithms such as Bernoulli and reservoir methods. According to the above theoretical analysis, different sequential manipulation policies are proposed under a Bayesian decision framework and a large class of parametric pairwise comparison models. For attackers with complete knowledge, we establish the asymptotic optimality of the proposed policies. To increase the success rate of the sequential manipulation with incomplete knowledge, a distributionally robust estimator, which replaces the maximum likelihood estimation in a saddle point problem, provides a conservative data generation solution. Finally, the corroborating empirical evidence shows that the proposed method manipulates the results of rank aggregation methods in a sequential manner.
Mobile-Bench: An Evaluation Benchmark for LLM-based Mobile Agents
Deng, Shihan, Xu, Weikai, Sun, Hongda, Liu, Wei, Tan, Tao, Liu, Jianfeng, Li, Ang, Luan, Jian, Wang, Bin, Yan, Rui, Shang, Shuo
With the remarkable advancements of large language models (LLMs), LLM-based agents have become a research hotspot in human-computer interaction. However, there is a scarcity of benchmarks available for LLM-based mobile agents. Benchmarking these agents generally faces three main challenges: (1) The inefficiency of UI-only operations imposes limitations to task evaluation. (2) Specific instructions within a singular application lack adequacy for assessing the multi-dimensional reasoning and decision-making capacities of LLM mobile agents. (3) Current evaluation metrics are insufficient to accurately assess the process of sequential actions. To this end, we propose Mobile-Bench, a novel benchmark for evaluating the capabilities of LLM-based mobile agents. First, we expand conventional UI operations by incorporating 103 collected APIs to accelerate the efficiency of task completion. Subsequently, we collect evaluation data by combining real user queries with augmentation from LLMs. To better evaluate different levels of planning capabilities for mobile agents, our data is categorized into three distinct groups: SAST, SAMT, and MAMT, reflecting varying levels of task complexity. Mobile-Bench comprises 832 data entries, with more than 200 tasks specifically designed to evaluate multi-APP collaboration scenarios. Furthermore, we introduce a more accurate evaluation metric, named CheckPoint, to assess whether LLM-based mobile agents reach essential points during their planning and reasoning steps.
CIMRL: Combining IMitation and Reinforcement Learning for Safe Autonomous Driving
Booher, Jonathan, Rohanimanesh, Khashayar, Xu, Junhong, Isenbaev, Vladislav, Balakrishna, Ashwin, Gupta, Ishan, Liu, Wei, Petiushko, Aleksandr
Modern approaches to autonomous driving rely heavily on learned components trained with large amounts of human driving data via imitation learning. However, these methods require large amounts of expensive data collection and even then face challenges with safely handling long-tail scenarios and compounding errors over time. At the same time, pure Reinforcement Learning (RL) methods can fail to learn performant policies in sparse, constrained, and challenging-to-define reward settings like driving. Both of these challenges make deploying purely cloned policies in safety critical applications like autonomous vehicles challenging. In this paper we propose Combining IMitation and Reinforcement Learning (CIMRL) approach - a framework that enables training driving policies in simulation through leveraging imitative motion priors and safety constraints. CIMRL does not require extensive reward specification and improves on the closed loop behavior of pure cloning methods. By combining RL and imitation, we demonstrate that our method achieves state-of-the-art results in closed loop simulation driving benchmarks.
Autonomous Agents for Collaborative Task under Information Asymmetry
Liu, Wei, Wang, Chenxi, Wang, Yifei, Xie, Zihao, Qiu, Rennai, Dang, Yufan, Du, Zhuoyun, Chen, Weize, Yang, Cheng, Qian, Chen
Large Language Model Multi-Agent Systems (LLM-MAS) have achieved great progress in solving complex tasks. It performs communication among agents within the system to collaboratively solve tasks, under the premise of shared information. However, when agents' communication is leveraged to enhance human cooperation, a new challenge arises due to information asymmetry, since each agent can only access the information of its human user. Previous MAS struggle to complete tasks under this condition. To address this, we propose a new MAS paradigm termed iAgents, which denotes Informative Multi-Agent Systems. In iAgents, the human social network is mirrored in the agent network, where agents proactively exchange human information necessary for task resolution, thereby overcoming information asymmetry. iAgents employs a novel agent reasoning mechanism, InfoNav, to navigate agents' communication towards effective information exchange. Together with InfoNav, iAgents organizes human information in a mixed memory to provide agents with accurate and comprehensive information for exchange. Additionally, we introduce InformativeBench, the first benchmark tailored for evaluating LLM agents' task-solving ability under information asymmetry. Experimental results show that iAgents can collaborate within a social network of 140 individuals and 588 relationships, autonomously communicate over 30 turns, and retrieve information from nearly 70,000 messages to complete tasks within 3 minutes.
SUBLLM: A Novel Efficient Architecture with Token Sequence Subsampling for LLM
Wang, Quandong, Yuan, Yuxuan, Yang, Xiaoyu, Zhang, Ruike, Zhao, Kang, Liu, Wei, Luan, Jian, Povey, Daniel, Wang, Bin
While Large Language Models (LLMs) have achieved remarkable success in various fields, the efficiency of training and inference remains a major challenge. To address this issue, we propose SUBLLM, short for Subsampling-Upsampling-Bypass Large Language Model, an innovative architecture that extends the core decoder-only framework by incorporating subsampling, upsampling, and bypass modules. The subsampling modules are responsible for shortening the sequence, while the upsampling modules restore the sequence length, and the bypass modules enhance convergence. In comparison to LLaMA, the proposed SUBLLM exhibits significant enhancements in both training and inference speeds as well as memory usage, while maintaining competitive few-shot performance. During training, SUBLLM increases speeds by 26% and cuts memory by 10GB per GPU. In inference, it boosts speeds by up to 37% and reduces memory by 1GB per GPU. The training and inference speeds can be enhanced by 34% and 52% respectively when the context window is expanded to 8192. We shall release the source code of the proposed architecture in the published version.
Fine-Grained Urban Flow Inference with Multi-scale Representation Learning
Yuan, Shilu, Li, Dongfeng, Liu, Wei, Zhang, Xinxin, Chen, Meng, Zhang, Junjie, Gong, Yongshun
Fine-grained urban flow inference (FUFI) is a crucial transportation service aimed at improving traffic efficiency and safety. FUFI can infer fine-grained urban traffic flows based solely on observed coarse-grained data. However, most of existing methods focus on the influence of single-scale static geographic information on FUFI, neglecting the interactions and dynamic information between different-scale regions within the city. Different-scale geographical features can capture redundant information from the same spatial areas. In order to effectively learn multi-scale information across time and space, we propose an effective fine-grained urban flow inference model called UrbanMSR, which uses self-supervised contrastive learning to obtain dynamic multi-scale representations of neighborhood-level and city-level geographic information, and fuses multi-scale representations to improve fine-grained accuracy. The fusion of multi-scale representations enhances fine-grained. We validate the performance through extensive experiments on three real-world datasets. The resutls compared with state-of-the-art methods demonstrate the superiority of the proposed model.
Multi-Agent Software Development through Cross-Team Collaboration
Du, Zhuoyun, Qian, Chen, Liu, Wei, Xie, Zihao, Wang, Yifei, Dang, Yufan, Chen, Weize, Yang, Cheng
The latest breakthroughs in Large Language Models (LLMs), eg., ChatDev, have catalyzed profound transformations, particularly through multi-agent collaboration for software development. LLM agents can collaborate in teams like humans, and follow the waterfall model to sequentially work on requirements analysis, development, review, testing, and other phases to perform autonomous software generation. However, for an agent team, each phase in a single development process yields only one possible outcome. This results in the completion of only one development chain, thereby losing the opportunity to explore multiple potential decision paths within the solution space. Consequently, this may lead to obtaining suboptimal results. To address this challenge, we introduce Cross-Team Collaboration (CTC), a scalable multi-team framework that enables orchestrated teams to jointly propose various decisions and communicate with their insights in a cross-team collaboration environment for superior content generation. Experimental results in software development reveal a notable increase in quality compared to state-of-the-art baselines, underscoring the efficacy of our framework. The significant improvements in story generation demonstrate the promising generalization ability of our framework across various domains. We anticipate that our work will guide LLM agents towards a cross-team paradigm and contribute to their significant growth in but not limited to software development. The code and data will be available at https://github.com/OpenBMB/ChatDev.
Scaling Large-Language-Model-based Multi-Agent Collaboration
Qian, Chen, Xie, Zihao, Wang, Yifei, Liu, Wei, Dang, Yufan, Du, Zhuoyun, Chen, Weize, Yang, Cheng, Liu, Zhiyuan, Sun, Maosong
Pioneering advancements in large language model-powered agents have underscored the design pattern of multi-agent collaboration, demonstrating that collective intelligence can surpass the capabilities of each individual. Inspired by the neural scaling law, which posits that increasing neurons leads to emergent abilities, this study investigates whether a similar principle applies to increasing agents in multi-agent collaboration. Technically, we propose multi-agent collaboration networks (MacNet), which utilize directed acyclic graphs to organize agents and streamline their interactive reasoning via topological ordering, with solutions derived from their dialogues. Extensive experiments show that MacNet consistently outperforms baseline models, enabling effective agent collaboration across various network topologies and supporting cooperation among more than a thousand agents. Notably, we observed a small-world collaboration phenomenon, where topologies resembling small-world properties achieved superior performance. Additionally, we identified a collaborative scaling law, indicating that normalized solution quality follows a logistic growth pattern as scaling agents, with collaborative emergence occurring much earlier than previously observed instances of neural emergence. The code and data will be available at https://github.com/OpenBMB/ChatDev.
A Parameter-efficient Language Extension Framework for Multilingual ASR
Liu, Wei, Hou, Jingyong, Yang, Dong, Cao, Muyong, Lee, Tan
Covering all languages with a multilingual speech recognition model (MASR) is very difficult. Performing language extension on top of an existing MASR is a desirable choice. In this study, the MASR continual learning problem is probabilistically decomposed into language identity prediction (LP) and cross-lingual adaptation (XLA) sub-problems. Based on this, we propose an architecture-based framework for language extension that can fundamentally solve catastrophic forgetting, debudded as PELE. PELE is designed to be parameter-efficient, incrementally incorporating an add-on module to adapt to a new language. Specifically, different parameter-efficient fine-tuning (PEFT) modules and their variants are explored as potential candidates to perform XLA. Experiments are carried out on 5 new languages with a wide range of low-resourced data sizes. The best-performing PEFT candidate can achieve satisfactory performance across all languages and demonstrates superiority in three of five languages over the continual joint learning setting. Notably, PEFT methods focusing on weight parameters or input features are revealed to be limited in performance, showing significantly inferior extension capabilities compared to inserting a lightweight module in between layers such as an Adapter.