Liu, Tianqiao
Advancing Math Reasoning in Language Models: The Impact of Problem-Solving Data, Data Synthesis Methods, and Training Stages
Chen, Zui, Liu, Tianqiao, Tian, Mi, Tong, Qing, Luo, Weiqi, Liu, Zitao
Mathematical reasoning remains a challenging area for large language models (LLMs), prompting the development of math-specific LLMs such as LLEMMA, DeepSeekMath, and Qwen2-Math, among others. These models typically follow a two-stage training paradigm: pre-training with math-related corpora and posttraining with problem datasets for supervised fine-tuning (SFT). Despite these efforts, the improvements in mathematical reasoning achieved through continued pre-training (CPT) are often less significant compared to those obtained via SFT. We investigate three primary research questions: (1) Can problem-solving data enhance the model's mathematical reasoning capabilities more effectively than general mathematical corpora during CPT? (2) Are synthetic data from the same source equally effective, and which synthesis methods are most efficient? Our findings indicate that problem-solving data significantly enhances the model's mathematical capabilities compared to general mathematical corpora. We also identify effective data synthesis methods, demonstrating that the tutorship amplification synthesis method achieves the best performance. Furthermore, while SFT facilitates instruction-following abilities, it underperforms compared to CPT with the same data, which can be partially attributed to its poor learning capacity for more challenging problem-solving data. To address the challenge of insufficient mathematical reasoning capabilities in large language models (LLMs), various math-specific LLMs are developed. These models generally follow a common training paradigm. During the pre-training stage, math-related corpora are filtered from extensive internet data to augment the model's mathematical knowledge. Work done during Zui Chen's internship at Guangdong Institute of Smart Education, Jinan University, Guangzhou, China. Model is available at https://huggingface.co/ai4ed/MathGPT-8B This enables the models to follow instructions and produce outputs in the desired format. Recently, there is a growing focus on constructing preference datasets for the solution process to perform Step-DPO (Lai et al., 2024) or online-RLHF (Dong et al., 2024). These approaches aim to obtain more accurate reasoning pathways, thereby significantly enhancing the mathematical reasoning capabilities of the models.
What Are Step-Level Reward Models Rewarding? Counterintuitive Findings from MCTS-Boosted Mathematical Reasoning
Ma, Yiran, Chen, Zui, Liu, Tianqiao, Tian, Mi, Liu, Zhuo, Liu, Zitao, Luo, Weiqi
Step-level reward models (SRMs) can significantly enhance mathematical reasoning performance through process supervision or step-level preference alignment based on reinforcement learning. The performance of SRMs is pivotal, as they serve as critical guidelines, ensuring that each step in the reasoning process is aligned with desired outcomes. Recently, AlphaZero-like methods, where Monte Carlo Tree Search (MCTS) is employed for automatic step-level preference annotation, have proven particularly effective. However, the precise mechanisms behind the success of SRMs remain largely unexplored. To address this gap, this study delves into the counterintuitive aspects of SRMs, particularly focusing on MCTS-based approaches. Our findings reveal that the removal of natural language descriptions of thought processes has minimal impact on the efficacy of SRMs. Furthermore, we demonstrate that SRMs are adept at assessing the complex logical coherence present in mathematical language while having difficulty in natural language. These insights provide a nuanced understanding of the core elements that drive effective step-level reward modeling in mathematical reasoning. By shedding light on these mechanisms, this study offers valuable guidance for developing more efficient and streamlined SRMs, which can be achieved by focusing on the crucial parts of mathematical reasoning.
Hypertext Entity Extraction in Webpage
Yang, Yifei, Liu, Tianqiao, Shao, Bo, Zhao, Hai, Shou, Linjun, Gong, Ming, Jiang, Daxin
Webpage entity extraction is a fundamental natural language processing task in both research and applications. Nowadays, the majority of webpage entity extraction models are trained on structured datasets which strive to retain textual content and its structure information. However, existing datasets all overlook the rich hypertext features (e.g., font color, font size) which show their effectiveness in previous works. To this end, we first collect a \textbf{H}ypertext \textbf{E}ntity \textbf{E}xtraction \textbf{D}ataset (\textit{HEED}) from the e-commerce domains, scraping both the text and the corresponding explicit hypertext features with high-quality manual entity annotations. Furthermore, we present the \textbf{Mo}E-based \textbf{E}ntity \textbf{E}xtraction \textbf{F}ramework (\textit{MoEEF}), which efficiently integrates multiple features to enhance model performance by Mixture of Experts and outperforms strong baselines, including the state-of-the-art small-scale models and GPT-3.5-turbo. Moreover, the effectiveness of hypertext features in \textit{HEED} and several model components in \textit{MoEEF} are analyzed.
Optimal Transport for Treatment Effect Estimation
Wang, Hao, Chen, Zhichao, Fan, Jiajun, Li, Haoxuan, Liu, Tianqiao, Liu, Weiming, Dai, Quanyu, Wang, Yichao, Dong, Zhenhua, Tang, Ruiming
Estimating conditional average treatment effect from observational data is highly challenging due to the existence of treatment selection bias. Prevalent methods mitigate this issue by aligning distributions of different treatment groups in the latent space. However, there are two critical problems that these methods fail to address: (1) mini-batch sampling effects (MSE), which causes misalignment in non-ideal mini-batches with outcome imbalance and outliers; (2) unobserved confounder effects (UCE), which results in inaccurate discrepancy calculation due to the neglect of unobserved confounders. To tackle these problems, we propose a principled approach named Entire Space CounterFactual Regression (ESCFR), which is a new take on optimal transport in the context of causality. Specifically, based on the framework of stochastic optimal transport, we propose a relaxed mass-preserving regularizer to address the MSE issue and design a proximal factual outcome regularizer to handle the UCE issue. Extensive experiments demonstrate that our proposed ESCFR can successfully tackle the treatment selection bias and achieve significantly better performance than state-of-the-art methods.
CTAL: Pre-training Cross-modal Transformer for Audio-and-Language Representations
Li, Hang, Kang, Yu, Liu, Tianqiao, Ding, Wenbiao, Liu, Zitao
Existing audio-language task-specific predictive approaches focus on building complicated late-fusion mechanisms. However, these models are facing challenges of overfitting with limited labels and low model generalization abilities. In this paper, we present a Cross-modal Transformer for Audio-and-Language, i.e., CTAL, which aims to learn the intra-modality and inter-modality connections between audio and language through two proxy tasks on a large amount of audio-and-language pairs: masked language modeling and masked cross-modal acoustic modeling. After fine-tuning our pre-trained model on multiple downstream audio-and-language tasks, we observe significant improvements across various tasks, such as, emotion classification, sentiment analysis, and speaker verification. On this basis, we further propose a specially-designed fusion mechanism that can be used in fine-tuning phase, which allows our pre-trained model to achieve better performance. Lastly, we demonstrate detailed ablation studies to prove that both our novel cross-modality fusion component and audio-language pre-training methods significantly contribute to the promising results.
Solving ESL Sentence Completion Questions via Pre-trained Neural Language Models
Liu, Qiongqiong, Liu, Tianqiao, Zhao, Jiafu, Fang, Qiang, Ding, Wenbiao, Wu, Zhongqin, Xia, Feng, Tang, Jiliang, Liu, Zitao
Sentence completion (SC) questions present a sentence with one or more blanks that need to be filled in, three to five possible words or phrases as options. SC questions are widely used for students learning English as a Second Language (ESL) and building computational approaches to automatically solve such questions is beneficial to language learners. In this work, we propose a neural framework to solve SC questions in English examinations by utilizing pre-trained language models. We conduct extensive experiments on a real-world K-12 ESL SC question dataset and the results demonstrate the superiority of our model in terms of prediction accuracy. Furthermore, we run precision-recall trade-off analysis to discuss the practical issues when deploying it in real-life scenarios. To encourage reproducible results, we make our code publicly available at \url{https://github.com/AIED2021/ESL-SentenceCompletion}.
Mathematical Word Problem Generation from Commonsense Knowledge Graph and Equations
Liu, Tianqiao, Fang, Qian, Ding, Wenbiao, Wu, Zhongqin, Liu, Zitao
There is an increasing interest in the use of automatic mathematical word problem (MWP) generation in educational assessment. Different from standard natural question generation, MWP generation needs to maintain the underlying mathematical operations between quantities and variables, while at the same time ensuring the relevance between the output and the given topic. To address above problem we develop an end-to-end neural model to generate personalized and diverse MWPs in real-world scenarios from commonsense knowledge graph and equations. The proposed model (1) learns both representations from edge-enhanced Levi graphs of symbolic equations and commonsense knowledge; (2) automatically fuses equation and commonsense knowledge information via a self-planning module when generating the MWPs. Experiments on an educational gold-standard set and a large-scale generated MWP set show that our approach is superior on the MWP generation task, and it outperforms the state-of-the-art models in terms of both automatic evaluation metrics, i.e., BLEU-4, ROUGE-L, Self-BLEU, and human evaluation metrics, i.e, equation relevance, topic relevance, and language coherence.
Recommender Systems with Heterogeneous Side Information
Liu, Tianqiao, Wang, Zhiwei, Tang, Jiliang, Yang, Songfan, Huang, Gale Yan, Liu, Zitao
In modern recommender systems, both users and items are associated with rich side information, which can help understand users and items. Such information is typically heterogeneous and can be roughly categorized into flat and hierarchical side information. While side information has been proved to be valuable, the majority of existing systems have exploited either only flat side information or only hierarchical side information due to the challenges brought by the heterogeneity. In this paper, we investigate the problem of exploiting heterogeneous side information for recommendations. Specifically, we propose a novel framework jointly captures flat and hierarchical side information with mathematical coherence. We demonstrate the effectiveness of the proposed framework via extensive experiments on various real-world datasets. Empirical results show that our approach is able to lead a significant performance gain over the state-of-the-art methods.