Goto

Collaborating Authors

 Liu, Tian


A Real-Time System for Scheduling and Managing UAV Delivery in Urban

arXiv.org Artificial Intelligence

As urban logistics demand continues to grow, UAV delivery has become a key solution to improve delivery efficiency, reduce traffic congestion, and lower logistics costs. However, to fully leverage the potential of UAV delivery networks, efficient swarm scheduling and management are crucial. In this paper, we propose a real-time scheduling and management system based on the ``Airport-Unloading Station" model, aiming to bridge the gap between high-level scheduling algorithms and low-level execution systems. This system, acting as middleware, accurately translates the requirements from the scheduling layer into specific execution instructions, ensuring that the scheduling algorithms perform effectively in real-world environments. Additionally, we implement three collaborative scheduling schemes involving autonomous ground vehicles (AGVs), unmanned aerial vehicles (UAVs), and ground staff to further optimize overall delivery efficiency. Through extensive experiments, this study demonstrates the rationality and feasibility of the proposed management system, providing practical solution for the commercial application of UAVs delivery in urban. Code: https://github.com/chengji253/UAVDeliverySystem


ERIC: Estimating Rainfall with Commodity Doorbell Camera for Precision Residential Irrigation

arXiv.org Artificial Intelligence

Current state-of-the-art residential irrigation systems, such as WaterMyYard, rely on rainfall data from nearby weather stations to adjust irrigation amounts. However, the accuracy of rainfall data is compromised by the limited spatial resolution of rain gauges and the significant variability of hyperlocal rainfall, leading to substantial water waste. To improve irrigation efficiency, we developed a cost-effective irrigation system, dubbed ERIC, which employs machine learning models to estimate rainfall from commodity doorbell camera footage and optimizes irrigation schedules without human intervention. Specifically, we: a) designed novel visual and audio features with lightweight neural network models to infer rainfall from the camera at the edge, preserving user privacy; b) built a complete end-to-end irrigation system on Raspberry Pi 4, costing only \$75. We deployed the system across five locations (collecting over 750 hours of video) with varying backgrounds and light conditions. Comprehensive evaluation validates that ERIC achieves state-of-the-art rainfall estimation performance ($\sim$ 5mm/day), saving 9,112 gallons/month of water, translating to \$28.56/month in utility savings. Data and code are available at https://github.com/LENSS/ERIC-BuildSys2024.git


UAL-Bench: The First Comprehensive Unusual Activity Localization Benchmark

arXiv.org Artificial Intelligence

Localizing unusual activities, such as human errors or surveillance incidents, in videos holds practical significance. However, current video understanding models struggle with localizing these unusual events likely because of their insufficient representation in models' pretraining datasets. To explore foundation models' capability in localizing unusual activity, we introduce UAL-Bench, a comprehensive benchmark for unusual activity localization, featuring three video datasets: UAG-OOPS, UAG-SSBD, UAG-FunQA, and an instruction-tune dataset: OOPS-UAG-Instruct, to improve model capabilities. UAL-Bench evaluates three approaches: Video-Language Models (Vid-LLMs), instruction-tuned Vid-LLMs, and a novel integration of Vision-Language Models and Large Language Models (VLM-LLM). Our results show the VLM-LLM approach excels in localizing short-span unusual events and predicting their onset (start time) more accurately than Vid-LLMs. We also propose a new metric, R@1, TD <= p, to address limitations in existing evaluation methods. Our findings highlight the challenges posed by long-duration videos, particularly in autism diagnosis scenarios, and the need for further advancements in localization techniques. Our work not only provides a benchmark for unusual activity localization but also outlines the key challenges for existing foundation models, suggesting future research directions on this important task.


Few-Shot Recognition via Stage-Wise Augmented Finetuning

arXiv.org Artificial Intelligence

Few-shot recognition aims to train a classification model with only a few labeled examples of pre-defined concepts, where annotation can be costly in a downstream task. In another related research area, zero-shot recognition, which assumes no access to any downstream-task data, has been greatly advanced by using pretrained Vision-Language Models (VLMs). In this area, retrieval-augmented learning (RAL) effectively boosts zero-shot accuracy by retrieving and learning from external data relevant to downstream concepts. Motivated by these advancements, our work explores RAL for few-shot recognition. While seemingly straightforward despite being under-explored in the literature (till now!), we present novel challenges and opportunities for applying RAL for few-shot recognition. First, perhaps surprisingly, simply finetuning the VLM on a large amount of retrieved data barely surpasses state-of-the-art zero-shot methods due to the imbalanced distribution of retrieved data and its domain gaps compared to few-shot annotated data. Second, finetuning a VLM on few-shot examples alone significantly outperforms prior methods, and finetuning on the mix of retrieved and few-shot data yields even better results. Third, to mitigate the imbalanced distribution and domain gap issue, we propose Stage-Wise Augmented fineTuning (SWAT) method, which involves end-to-end finetuning on mixed data for the first stage and retraining the classifier solely on the few-shot data in the second stage. Extensive experiments show that SWAT achieves the best performance on standard benchmark datasets, resoundingly outperforming prior works by ~10% in accuracy. Code is available at https://github.com/tian1327/SWAT.


Learning using granularity statistical invariants for classification

arXiv.org Artificial Intelligence

Learning using statistical invariants (LUSI) is a new learning paradigm, which adopts weak convergence mechanism, and can be applied to a wider range of classification problems. However, the computation cost of invariant matrices in LUSI is high for large-scale datasets during training. To settle this issue, this paper introduces a granularity statistical invariant for LUSI, and develops a new learning paradigm called learning using granularity statistical invariants (LUGSI). LUGSI employs both strong and weak convergence mechanisms, taking a perspective of minimizing expected risk. As far as we know, it is the first time to construct granularity statistical invariants. Compared to LUSI, the introduction of this new statistical invariant brings two advantages. Firstly, it enhances the structural information of the data. Secondly, LUGSI transforms a large invariant matrix into a smaller one by maximizing the distance between classes, achieving feasibility for large-scale datasets classification problems and significantly enhancing the training speed of model operations. Experimental results indicate that LUGSI not only exhibits improved generalization capabilities but also demonstrates faster training speed, particularly for large-scale datasets.


The Neglected Tails of Vision-Language Models

arXiv.org Artificial Intelligence

Vision-language models (VLMs) excel in zero-shot recognition but their performance varies greatly across different visual concepts. For example, although CLIP achieves impressive accuracy on ImageNet (60-80%), its performance drops below 10% for more than ten concepts like night snake, presumably due to their limited presence in the pretraining data. However, measuring the frequency of concepts in VLMs' large-scale datasets is challenging. We address this by using large language models (LLMs) to count the number of pretraining texts that contain synonyms of these concepts. Our analysis confirms that popular datasets, such as LAION, exhibit a long-tailed concept distribution, yielding biased performance in VLMs. We also find that downstream applications of VLMs, including visual chatbots (e.g., GPT-4V) and text-to-image models (e.g., Stable Diffusion), often fail to recognize or generate images of rare concepts identified by our method. To mitigate the imbalanced performance of zero-shot VLMs, we propose REtrieval-Augmented Learning (REAL). First, instead of prompting VLMs using the original class names, REAL uses their most frequent synonyms found in pretraining texts. This simple change already outperforms costly human-engineered and LLM-enriched prompts over nine benchmark datasets. Second, REAL trains a linear classifier on a small yet balanced set of pretraining data retrieved using concept synonyms. REAL surpasses the previous zero-shot SOTA, using 400x less storage and 10,000x less training time!


Technical Report: On the Convergence of Gossip Learning in the Presence of Node Inaccessibility

arXiv.org Artificial Intelligence

Gossip learning (GL), as a decentralized alternative to federated learning (FL), is more suitable for resource-constrained wireless networks, such as FANETs that are formed by unmanned aerial vehicles (UAVs). GL can significantly enhance the efficiency and extend the battery life of UAV networks. Despite the advantages, the performance of GL is strongly affected by data distribution, communication speed, and network connectivity. However, how these factors influence the GL convergence is still unclear. Existing work studied the convergence of GL based on a virtual quantity for the sake of convenience, which fail to reflect the real state of the network when some nodes are inaccessible. In this paper, we formulate and investigate the impact of inaccessible nodes to GL under a dynamic network topology. We first decompose the weight divergence by whether the node is accessible or not. Then, we investigate the GL convergence under the dynamic of node accessibility and theoretically provide how the number of inaccessible nodes, data non-i.i.d.-ness, and duration of inaccessibility affect the convergence. Extensive experiments are carried out in practical settings to comprehensively verify the correctness of our theoretical findings.


Efficient Federated Learning for AIoT Applications Using Knowledge Distillation

arXiv.org Artificial Intelligence

As a promising distributed machine learning paradigm, Federated Learning (FL) trains a central model with decentralized data without compromising user privacy, which has made it widely used by Artificial Intelligence Internet of Things (AIoT) applications. However, the traditional FL suffers from model inaccuracy since it trains local models using hard labels of data and ignores useful information of incorrect predictions with small probabilities. Although various solutions try to tackle the bottleneck of the traditional FL, most of them introduce significant communication and memory overhead, making the deployment of large-scale AIoT devices a great challenge. To address the above problem, this paper presents a novel Distillation-based Federated Learning (DFL) architecture that enables efficient and accurate FL for AIoT applications. Inspired by Knowledge Distillation (KD) that can increase the model accuracy, our approach adds the soft targets used by KD to the FL model training, which occupies negligible network resources. The soft targets are generated by local sample predictions of each AIoT device after each round of local training and used for the next round of model training. During the local training of DFL, both soft targets and hard labels are used as approximation objectives of model predictions to improve model accuracy by supplementing the knowledge of soft targets. To further improve the performance of our DFL model, we design a dynamic adjustment strategy for tuning the ratio of two loss functions used in KD, which can maximize the use of both soft targets and hard labels. Comprehensive experimental results on well-known benchmarks show that our approach can significantly improve the model accuracy of FL with both Independent and Identically Distributed (IID) and non-IID data.


Deep Learning Based Antenna-time Domain Channel Extrapolation for Hybrid mmWave Massive MIMO

arXiv.org Artificial Intelligence

In a time-varying massive multiple-input multipleoutput (MIMO) system, the acquisition of the downlink channel state information at the base station (BS) is a very challenging task due to the prohibitively high overheads associated with downlink training and uplink feedback. In this paper, we consider the hybrid precoding structure at BS and examine the antennatime domain channel extrapolation. We design a latent ordinary differential equation (ODE)-based network under the variational auto-encoder (VAE) framework to learn the mapping function from the partial uplink channels to the full downlink ones at the BS side. Specifically, the gated recurrent unit is adopted for the encoder and the fully-connected neural network is used for the decoder. The end-to-end learning is utilized to optimize the network parameters. Simulation results show that the designed network can efficiently infer the full downlink channels from the partial uplink ones, which can significantly reduce the channel training overhead.


FDA3 : Federated Defense Against Adversarial Attacks for Cloud-Based IIoT Applications

arXiv.org Machine Learning

Along with the proliferation of Artificial Intelligence (AI) and Internet of Things (IoT) techniques, various kinds of adversarial attacks are increasingly emerging to fool Deep Neural Networks (DNNs) used by Industrial IoT (IIoT) applications. Due to biased training data or vulnerable underlying models, imperceptible modifications on inputs made by adversarial attacks may result in devastating consequences. Although existing methods are promising in defending such malicious attacks, most of them can only deal with limited existing attack types, which makes the deployment of large-scale IIoT devices a great challenge. To address this problem, we present an effective federated defense approach named FDA3 that can aggregate defense knowledge against adversarial examples from different sources. Inspired by federated learning, our proposed cloud-based architecture enables the sharing of defense capabilities against different attacks among IIoT devices. Comprehensive experimental results show that the generated DNNs by our approach can not only resist more malicious attacks than existing attack-specific adversarial training methods, but also can prevent IIoT applications from new attacks.