Goto

Collaborating Authors

 Liu, Tengyu


StyleLoco: Generative Adversarial Distillation for Natural Humanoid Robot Locomotion

arXiv.org Artificial Intelligence

Humanoid robots are anticipated to acquire a wide range of locomotion capabilities while ensuring natural movement across varying speeds and terrains. Existing methods encounter a fundamental dilemma in learning humanoid locomotion: reinforcement learning with handcrafted rewards can achieve agile locomotion but produces unnatural gaits, while Generative Adversarial Imitation Learning (GAIL) with motion capture data yields natural movements but suffers from unstable training processes and restricted agility. Integrating these approaches proves challenging due to the inherent heterogeneity between expert policies and human motion datasets. To address this, we introduce StyleLoco, a novel two-stage framework that bridges this gap through a Generative Adversarial Distillation (GAD) process. Our framework begins by training a teacher policy using reinforcement learning to achieve agile and dynamic locomotion. It then employs a multi-discriminator architecture, where distinct discriminators concurrently extract skills from both the teacher policy and motion capture data. This approach effectively combines the agility of reinforcement learning with the natural fluidity of human-like movements while mitigating the instability issues commonly associated with adversarial training. Through extensive simulation and real-world experiments, we demonstrate that StyleLoco enables humanoid robots to perform diverse locomotion tasks with the precision of expertly trained policies and the natural aesthetics of human motion, successfully transferring styles across different movement types while maintaining stable locomotion across a broad spectrum of command inputs.


Embedding high-resolution touch across robotic hands enables adaptive human-like grasping

arXiv.org Artificial Intelligence

Developing robotic hands that adapt to real-world dynamics remains a fundamental challenge in robotics and machine intelligence. Despite significant advances in replicating human hand kinematics and control algorithms, robotic systems still struggle to match human capabilities in dynamic environments, primarily due to inadequate tactile feedback. To bridge this gap, we present F-TAC Hand, a biomimetic hand featuring high-resolution tactile sensing (0.1mm spatial resolution) across 70% of its surface area. Through optimized hand design, we overcome traditional challenges in integrating high-resolution tactile sensors while preserving the full range of motion. The hand, powered by our generative algorithm that synthesizes human-like hand configurations, demonstrates robust grasping capabilities in dynamic real-world conditions. Extensive evaluation across 600 real-world trials demonstrates that this tactile-embodied system significantly outperforms non-tactile alternatives in complex manipulation tasks (p<0.0001). These results provide empirical evidence for the critical role of rich tactile embodiment in developing advanced robotic intelligence, offering new perspectives on the relationship between physical sensing capabilities and intelligent behavior.


Ag2Manip: Learning Novel Manipulation Skills with Agent-Agnostic Visual and Action Representations

arXiv.org Artificial Intelligence

Autonomous robotic systems capable of learning novel manipulation tasks are poised to transform industries from manufacturing to service automation. However, modern methods (e.g., VIP and R3M) still face significant hurdles, notably the domain gap among robotic embodiments and the sparsity of successful task executions within specific action spaces, resulting in misaligned and ambiguous task representations. We introduce Ag2Manip (Agent-Agnostic representations for Manipulation), a framework aimed at surmounting these challenges through two key innovations: a novel agent-agnostic visual representation derived from human manipulation videos, with the specifics of embodiments obscured to enhance generalizability; and an agent-agnostic action representation abstracting a robot's kinematics to a universal agent proxy, emphasizing crucial interactions between end-effector and object. Ag2Manip's empirical validation across simulated benchmarks like FrankaKitchen, ManiSkill, and PartManip shows a 325% increase in performance, achieved without domain-specific demonstrations. Ablation studies underline the essential contributions of the visual and action representations to this success. Extending our evaluations to the real world, Ag2Manip significantly improves imitation learning success rates from 50% to 77.5%, demonstrating its effectiveness and generalizability across both simulated and physical environments.


AnySkill: Learning Open-Vocabulary Physical Skill for Interactive Agents

arXiv.org Artificial Intelligence

Traditional approaches in physics-based motion generation, centered around imitation learning and reward shaping, often struggle to adapt to new scenarios. To tackle this limitation, we propose AnySkill, a novel hierarchical method that learns physically plausible interactions following open-vocabulary instructions. Our approach begins by developing a set of atomic actions via a low-level controller trained via imitation learning. Upon receiving an open-vocabulary textual instruction, AnySkill employs a high-level policy that selects and integrates these atomic actions to maximize the CLIP similarity between the agent's rendered images and the text. An important feature of our method is the use of image-based rewards for the high-level policy, which allows the agent to learn interactions with objects without manual reward engineering. We demonstrate AnySkill's capability to generate realistic and natural motion sequences in response to unseen instructions of varying lengths, marking it the first method capable of open-vocabulary physical skill learning for interactive humanoid agents.


SceneVerse: Scaling 3D Vision-Language Learning for Grounded Scene Understanding

arXiv.org Artificial Intelligence

3D vision-language grounding, which focuses on aligning language with the 3D physical environment, stands as a cornerstone in the development of embodied agents. In comparison to recent advancements in the 2D domain, grounding language in 3D scenes faces several significant challenges: (i) the inherent complexity of 3D scenes due to the diverse object configurations, their rich attributes, and intricate relationships; (ii) the scarcity of paired 3D vision-language data to support grounded learning; and (iii) the absence of a unified learning framework to distill knowledge from grounded 3D data. In this work, we aim to address these three major challenges in 3D vision-language by examining the potential of systematically upscaling 3D vision-language learning in indoor environments. We introduce the first million-scale 3D vision-language dataset, SceneVerse, encompassing about 68K 3D indoor scenes and comprising 2.5M vision-language pairs derived from both human annotations and our scalable scene-graph-based generation approach. We demonstrate that this scaling allows for a unified pre-training framework, Grounded Pre-training for Scenes (GPS), for 3D vision-language learning. Through extensive experiments, we showcase the effectiveness of GPS by achieving state-of-the-art performance on all existing 3D visual grounding benchmarks. The vast potential of SceneVerse and GPS is unveiled through zero-shot transfer experiments in the challenging 3D vision-language tasks. Project website: https://scene-verse.github.io .


Feedback RoI Features Improve Aerial Object Detection

arXiv.org Artificial Intelligence

Neuroscience studies have shown that the human visual system utilizes high-level feedback information to guide lower-level perception, enabling adaptation to signals of different characteristics. In light of this, we propose Feedback multi-Level feature Extractor (Flex) to incorporate a similar mechanism for object detection. Flex refines feature selection based on image-wise and instance-level feedback information in response to image quality variation and classification uncertainty. Experimental results show that Flex offers consistent improvement to a range of existing SOTA methods on the challenging aerial object detection datasets including DOTA-v1.0, DOTA-v1.5, and HRSC2016. Although the design originates in aerial image detection, further experiments on MS COCO also reveal our module's efficacy in general detection models. Quantitative and qualitative analyses indicate that the improvements are closely related to image qualities, which match our motivation.


Grasp Multiple Objects with One Hand

arXiv.org Artificial Intelligence

Our work aligns more with the second approach, dataset tailored for multi-object grasping research; (ii) the aiming to maintain individual object maneuverability while development of the first Goal-Conditioned Reinforcement boosting grasp efficiency. Learning (GCRL) policy for concurrent grasping and lifting Reinforcement Learning (RL): Robots often operate of multiple objects from a table; (iii) the enhancement of in complex physical environments, making analytical the execution policy for better adaptability to unseen object solutions challenging due to noisy sensory input. RL is configurations and imprecise pre-grasp poses, achieved via commonly used for decision-making and control in these specialist distillation and curriculum learning; (iv) a comprehensive cases [4, 5, 16, 40, 41]. As a specialized form, GCRL [42] framework, MultiGrasp, that extends existing robotic focuses on skill acquisition for predefined objectives, but systems toward robust, accurate multi-object grasping.


UniDexGrasp: Universal Robotic Dexterous Grasping via Learning Diverse Proposal Generation and Goal-Conditioned Policy

arXiv.org Artificial Intelligence

In this work, we tackle the problem of learning universal robotic dexterous grasping from a point cloud observation under a table-top setting. The goal is to grasp and lift up objects in high-quality and diverse ways and generalize across hundreds of categories and even the unseen. Inspired by successful pipelines used in parallel gripper grasping, we split the task into two stages: 1) grasp proposal (pose) generation and 2) goal-conditioned grasp execution. For the first stage, we propose a novel probabilistic model of grasp pose conditioned on the point cloud observation that factorizes rotation from translation and articulation. Trained on our synthesized large-scale dexterous grasp dataset, this model enables us to sample diverse and high-quality dexterous grasp poses for the object point cloud.For the second stage, we propose to replace the motion planning used in parallel gripper grasping with a goal-conditioned grasp policy, due to the complexity involved in dexterous grasping execution. Note that it is very challenging to learn this highly generalizable grasp policy that only takes realistic inputs without oracle states. We thus propose several important innovations, including state canonicalization, object curriculum, and teacher-student distillation. Integrating the two stages, our final pipeline becomes the first to achieve universal generalization for dexterous grasping, demonstrating an average success rate of more than 60\% on thousands of object instances, which significantly outperforms all baselines, meanwhile showing only a minimal generalization gap.


DexGraspNet: A Large-Scale Robotic Dexterous Grasp Dataset for General Objects Based on Simulation

arXiv.org Artificial Intelligence

Robotic dexterous grasping is the first step to enable human-like dexterous object manipulation and thus a crucial robotic technology. However, dexterous grasping is much more under-explored than object grasping with parallel grippers, partially due to the lack of a large-scale dataset. In this work, we present a large-scale robotic dexterous grasp dataset, DexGraspNet, generated by our proposed highly efficient synthesis method that can be generally applied to any dexterous hand. Our method leverages a deeply accelerated differentiable force closure estimator and thus can efficiently and robustly synthesize stable and diverse grasps on a large scale. We choose ShadowHand and generate 1.32 million grasps for 5355 objects, covering more than 133 object categories and containing more than 200 diverse grasps for each object instance, with all grasps having been validated by the Isaac Gym simulator. Compared to the previous dataset from Liu et al. generated by GraspIt!, our dataset has not only more objects and grasps, but also higher diversity and quality. Via performing cross-dataset experiments, we show that training several algorithms of dexterous grasp synthesis on our dataset significantly outperforms training on the previous one. To access our data and code, including code for human and Allegro grasp synthesis, please visit our project page: https://pku-epic.github.io/DexGraspNet/.


GenDexGrasp: Generalizable Dexterous Grasping

arXiv.org Artificial Intelligence

Generating dexterous grasping has been a long-standing and challenging robotic task. Despite recent progress, existing methods primarily suffer from two issues. First, most prior arts focus on a specific type of robot hand, lacking the generalizable capability of handling unseen ones. Second, prior arts oftentimes fail to rapidly generate diverse grasps with a high success rate. To jointly tackle these challenges with a unified solution, we propose GenDexGrasp, a novel hand-agnostic grasping algorithm for generalizable grasping. GenDexGrasp is trained on our proposed large-scale multi-hand grasping dataset MultiDex synthesized with force closure optimization. By leveraging the contact map as a hand-agnostic intermediate representation, GenDexGrasp efficiently generates diverse and plausible grasping poses with a high success rate and can transfer among diverse multi-fingered robotic hands. Compared with previous methods, GenDexGrasp achieves a three-way trade-off among success rate, inference speed, and diversity. Code is available at https://github.com/tengyu-liu/GenDexGrasp.