Liu, Shuliang
Judge as A Judge: Improving the Evaluation of Retrieval-Augmented Generation through the Judge-Consistency of Large Language Models
Liu, Shuliang, Li, Xinze, Liu, Zhenghao, Yan, Yukun, Yang, Cheng, Zeng, Zheni, Liu, Zhiyuan, Sun, Maosong, Yu, Ge
Retrieval-Augmented Generation (RAG) has proven its effectiveness in alleviating hallucinations for Large Language Models (LLMs). However, existing automated evaluation metrics cannot fairly evaluate the outputs generated by RAG models during training and evaluation. LLM-based judgment models provide the potential to produce high-quality judgments, but they are highly sensitive to evaluation prompts, leading to inconsistencies when judging the output of RAG models. This paper introduces the Judge-Consistency (ConsJudge) method, which aims to enhance LLMs to generate more accurate evaluations for RAG models. Specifically, ConsJudge prompts LLMs to generate different judgments based on various combinations of judgment dimensions, utilize the judge-consistency to evaluate these judgments and select the accepted and rejected judgments for DPO training. Our experiments show that ConsJudge can effectively provide more accurate judgments for optimizing RAG models across various RAG models and datasets. Further analysis reveals that judgments generated by ConsJudge have a high agreement with the superior LLM. All codes are available at https://github.com/OpenBMB/ConsJudge.
MarkLLM: An Open-Source Toolkit for LLM Watermarking
Pan, Leyi, Liu, Aiwei, He, Zhiwei, Gao, Zitian, Zhao, Xuandong, Lu, Yijian, Zhou, Binglin, Liu, Shuliang, Hu, Xuming, Wen, Lijie, King, Irwin
LLM watermarking, which embeds imperceptible yet algorithmically detectable signals in model outputs to identify LLM-generated text, has become crucial in mitigating the potential misuse of large language models. However, the abundance of LLM watermarking algorithms, their intricate mechanisms, and the complex evaluation procedures and perspectives pose challenges for researchers and the community to easily experiment with, understand, and assess the latest advancements. To address these issues, we introduce MarkLLM, an open-source toolkit for LLM watermarking. MarkLLM offers a unified and extensible framework for implementing LLM watermarking algorithms, while providing user-friendly interfaces to ensure ease of access. Furthermore, it enhances understanding by supporting automatic visualization of the underlying mechanisms of these algorithms. For evaluation, MarkLLM offers a comprehensive suite of 12 tools spanning three perspectives, along with two types of automated evaluation pipelines. Through MarkLLM, we aim to support researchers while improving the comprehension and involvement of the general public in LLM watermarking technology, fostering consensus and driving further advancements in research and application. Our code is available at https://github.com/THU-BPM/MarkLLM.
HiURE: Hierarchical Exemplar Contrastive Learning for Unsupervised Relation Extraction
Hu, Xuming, Liu, Shuliang, Zhang, Chenwei, Li, Shu`ang, Wen, Lijie, Yu, Philip S.
Unsupervised relation extraction aims to extract the relationship between entities from natural language sentences without prior information on relational scope or distribution. Existing works either utilize self-supervised schemes to refine relational feature signals by iteratively leveraging adaptive clustering and classification that provoke gradual drift problems, or adopt instance-wise contrastive learning which unreasonably pushes apart those sentence pairs that are semantically similar. To overcome these defects, we propose a novel contrastive learning framework named HiURE, which has the capability to derive hierarchical signals from relational feature space using cross hierarchy attention and effectively optimize relation representation of sentences under exemplar-wise contrastive learning. Experimental results on two public datasets demonstrate the advanced effectiveness and robustness of HiURE on unsupervised relation extraction when compared with state-of-the-art models.