Liu, Sen
Digital Twin-Enabled Real-Time Control in Robotic Additive Manufacturing via Soft Actor-Critic Reinforcement Learning
Ali, Matsive, Giri, Sandesh, Liu, Sen, Yang, Qin
Smart manufacturing systems increasingly rely on adaptive control mechanisms to optimize complex processes. This research presents a novel approach integrating Soft Actor-Critic (SAC) reinforcement learning with digital twin technology to enable real-time process control in robotic additive manufacturing. We demonstrate our methodology using a Viper X300s robot arm, implementing two distinct control scenarios: static target acquisition and dynamic trajectory following. The system architecture combines Unity's simulation environment with ROS2 for seamless digital twin synchronization, while leveraging transfer learning to efficiently adapt trained models across tasks. Our hierarchical reward structure addresses common reinforcement learning challenges including local minima avoidance, convergence acceleration, and training stability. Experimental results show rapid policy convergence and robust task execution in both simulated and physical environments, with performance metrics including cumulative reward, value prediction accuracy, policy loss, and discrete entropy coefficient demonstrating the effectiveness of our approach. This work advances the integration of reinforcement learning with digital twins for industrial robotics applications, providing a framework for enhanced adaptive real-time control for smart additive manufacturing process.
FedCAda: Adaptive Client-Side Optimization for Accelerated and Stable Federated Learning
Zhou, Liuzhi, He, Yu, Zhai, Kun, Liu, Xiang, Liu, Sen, Ma, Xingjun, Ye, Guangnan, Jiang, Yu-Gang, Chai, Hongfeng
Federated learning (FL) has emerged as a prominent approach for collaborative training of machine learning models across distributed clients while preserving data privacy. However, the quest to balance acceleration and stability becomes a significant challenge in FL, especially on the client-side. In this paper, we introduce FedCAda, an innovative federated client adaptive algorithm designed to tackle this challenge. FedCAda leverages the Adam algorithm to adjust the correction process of the first moment estimate $m$ and the second moment estimate $v$ on the client-side and aggregate adaptive algorithm parameters on the server-side, aiming to accelerate convergence speed and communication efficiency while ensuring stability and performance. Additionally, we investigate several algorithms incorporating different adjustment functions. This comparative analysis revealed that due to the limited information contained within client models from other clients during the initial stages of federated learning, more substantial constraints need to be imposed on the parameters of the adaptive algorithm. As federated learning progresses and clients gather more global information, FedCAda gradually diminishes the impact on adaptive parameters. These findings provide insights for enhancing the robustness and efficiency of algorithmic improvements. Through extensive experiments on computer vision (CV) and natural language processing (NLP) datasets, we demonstrate that FedCAda outperforms the state-of-the-art methods in terms of adaptability, convergence, stability, and overall performance. This work contributes to adaptive algorithms for federated learning, encouraging further exploration.
StoryTTS: A Highly Expressive Text-to-Speech Dataset with Rich Textual Expressiveness Annotations
Liu, Sen, Guo, Yiwei, Chen, Xie, Yu, Kai
While acoustic expressiveness has long been studied in expressive text-to-speech (ETTS), the inherent expressiveness in text lacks sufficient attention, especially for ETTS of artistic works. In this paper, we introduce StoryTTS, a highly ETTS dataset that contains rich expressiveness both in acoustic and textual perspective, from the recording of a Mandarin storytelling show. A systematic and comprehensive labeling framework is proposed for textual expressiveness. We analyze and define speech-related textual expressiveness in StoryTTS to include five distinct dimensions through linguistics, rhetoric, etc. Then we employ large language models and prompt them with a few manual annotation examples for batch annotation. The resulting corpus contains 61 hours of consecutive and highly prosodic speech equipped with accurate text transcriptions and rich textual expressiveness annotations. Therefore, StoryTTS can aid future ETTS research to fully mine the abundant intrinsic textual and acoustic features. Experiments are conducted to validate that TTS models can generate speech with improved expressiveness when integrating with the annotated textual labels in StoryTTS.
SilverSight: A Multi-Task Chinese Financial Large Language Model Based on Adaptive Semantic Space Learning
Zhou, Yuhang, Li, Zeping, Tian, Siyu, Ni, Yuchen, Liu, Sen, Ye, Guangnan, Chai, Hongfeng
Large language models (LLMs) are increasingly being applied across various specialized fields, leveraging their extensive knowledge to empower a multitude of scenarios within these domains. However, each field encompasses a variety of specific tasks that require learning, and the diverse, heterogeneous data across these domains can lead to conflicts during model task transfer. In response to this challenge, our study introduces an Adaptive Semantic Space Learning (ASSL) framework, which utilizes the adaptive reorganization of data distributions within the semantic space to enhance the performance and selection efficacy of multi-expert models. Utilizing this framework, we trained a financial multi-task LLM named "SilverSight". Our research findings demonstrate that our framework can achieve results close to those obtained with full data training using only 10% of the data, while also exhibiting strong generalization capabilities.
$R^3$-NL2GQL: A Hybrid Models Approach for for Accuracy Enhancing and Hallucinations Mitigation
Zhou, Yuhang, Yu, He, Tian, Siyu, Chen, Dan, Zhou, Liuzhi, Yu, Xinlin, Ji, Chuanjun, Liu, Sen, Ye, Guangnan, Chai, Hongfeng
While current NL2SQL tasks constructed using Foundation Models have achieved commendable results, their direct application to Natural Language to Graph Query Language (NL2GQL) tasks poses challenges due to the significant differences between GQL and SQL expressions, as well as the numerous types of GQL. Our extensive experiments reveal that in NL2GQL tasks, larger Foundation Models demonstrate superior cross-schema generalization abilities, while smaller Foundation Models struggle to improve their GQL generation capabilities through fine-tuning. However, after fine-tuning, smaller models exhibit better intent comprehension and higher grammatical accuracy. Diverging from rule-based and slot-filling techniques, we introduce R3-NL2GQL, which employs both smaller and larger Foundation Models as reranker, rewriter and refiner. The approach harnesses the comprehension ability of smaller models for information reranker and rewriter, and the exceptional generalization and generation capabilities of larger models to transform input natural language queries and code structure schema into any form of GQLs. Recognizing the lack of established datasets in this nascent domain, we have created a bilingual dataset derived from graph database documentation and some open-source Knowledge Graphs (KGs). We tested our approach on this dataset and the experimental results showed that delivers promising performance and robustness.Our code and dataset is available at https://github.com/zhiqix/NL2GQL
Expressive TTS Driven by Natural Language Prompts Using Few Human Annotations
Zhang, Hanglei, Guo, Yiwei, Liu, Sen, Chen, Xie, Yu, Kai
Expressive text-to-speech (TTS) aims to synthesize speeches with human-like tones, moods, or even artistic attributes. Recent advancements in expressive TTS empower users with the ability to directly control synthesis style through natural language prompts. However, these methods often require excessive training with a significant amount of style-annotated data, which can be challenging to acquire. Moreover, they may have limited adaptability due to fixed style annotations. In this work, we present FreeStyleTTS (FS-TTS), a controllable expressive TTS model with minimal human annotations. Our approach utilizes a large language model (LLM) to transform expressive TTS into a style retrieval task. The LLM selects the best-matching style references from annotated utterances based on external style prompts, which can be raw input text or natural language style descriptions. The selected reference guides the TTS pipeline to synthesize speeches with the intended style. This innovative approach provides flexible, versatile, and precise style control with minimal human workload. Experiments on a Mandarin storytelling corpus demonstrate FS-TTS's proficiency in leveraging LLM's semantic inference ability to retrieve desired styles from either input text or user-defined descriptions. This results in synthetic speeches that are closely aligned with the specified styles.
OSP: Boosting Distributed Model Training with 2-stage Synchronization
Chen, Zixuan, Shi, Lei, Liu, Xuandong, Li, Jiahui, Liu, Sen, Xu, Yang
Distributed deep learning (DDL) is a promising research area, which aims to increase the efficiency of training deep learning tasks with large size of datasets and models. As the computation capability of DDL nodes continues to increase, the network connection between nodes is becoming a major bottleneck. Various methods of gradient compression and improved model synchronization have been proposed to address this bottleneck in Parameter-Server-based DDL. However, these two types of methods can result in accuracy loss due to discarded gradients and have limited enhancement on the throughput of model synchronization, respectively. To address these challenges, we propose a new model synchronization method named Overlapped Synchronization Parallel (OSP), which achieves efficient communication with a 2-stage synchronization approach and uses Local-Gradient-based Parameter correction (LGP) to avoid accuracy loss caused by stale parameters. The prototype of OSP has been implemented using PyTorch and evaluated on commonly used deep learning models and datasets with a 9-node testbed. Evaluation results show that OSP can achieve up to 50\% improvement in throughput without accuracy loss compared to popular synchronization models.
DSE-TTS: Dual Speaker Embedding for Cross-Lingual Text-to-Speech
Liu, Sen, Guo, Yiwei, Du, Chenpeng, Chen, Xie, Yu, Kai
Although high-fidelity speech can be obtained for intralingual speech synthesis, cross-lingual text-to-speech (CTTS) is still far from satisfactory as it is difficult to accurately retain the speaker timbres(i.e. speaker similarity) and eliminate the accents from their first language(i.e. nativeness). In this paper, we demonstrated that vector-quantized(VQ) acoustic feature contains less speaker information than mel-spectrogram. Based on this finding, we propose a novel dual speaker embedding TTS (DSE-TTS) framework for CTTS with authentic speaking style. Here, one embedding is fed to the acoustic model to learn the linguistic speaking style, while the other one is integrated into the vocoder to mimic the target speaker's timbre. Experiments show that by combining both embeddings, DSE-TTS significantly outperforms the state-of-the-art SANE-TTS in cross-lingual synthesis, especially in terms of nativeness.
Boosting Distributed Machine Learning Training Through Loss-tolerant Transmission Protocol
Chen, Zixuan, Shi, Lei, Liu, Xuandong, Ai, Xin, Liu, Sen, Xu, Yang
Distributed Machine Learning (DML) systems are utilized to enhance the speed of model training in data centers (DCs) and edge nodes. The Parameter Server (PS) communication architecture is commonly employed, but it faces severe long-tail latency caused by many-to-one "incast" traffic patterns, negatively impacting training throughput. To address this challenge, we design the \textbf{L}oss-tolerant \textbf{T}ransmission \textbf{P}rotocol (LTP), which permits partial loss of gradients during synchronization to avoid unneeded retransmission and contributes to faster synchronization per iteration. LTP implements loss-tolerant transmission through \textit{out-of-order transmission} and \textit{out-of-order Acknowledges (ACKs)}. LTP employs \textit{Early Close} to adjust the loss-tolerant threshold based on network conditions and \textit{Bubble Filling} for data correction to maintain training accuracy. LTP is implemented by C++ and integrated into PyTorch. Evaluations on a testbed of 8 worker nodes and one PS node demonstrate that LTP can significantly improve DML training task throughput by up to 30x compared to traditional TCP congestion controls, with no sacrifice to final accuracy.
Comprehensive process-molten pool relations modeling using CNN for wire-feed laser additive manufacturing
Jamnikar, Noopur, Liu, Sen, Brice, Craig, Zhang, Xiaoli
Wire-feed laser additive manufacturing (WLAM) is gaining wide interest due to its high level of automation, high deposition rates, and good quality of printed parts. In-process monitoring and feedback controls that would reduce the uncertainty in the quality of the material are in the early stages of development. Machine learning promises the ability to accelerate the adoption of new processes and property design in additive manufacturing by making process-structure-property connections between process setting inputs and material quality outcomes. The molten pool dimensional information and temperature are the indicators for achieving the high quality of the build, which can be directly controlled by processing parameters. For the purpose of in situ quality control, the process parameters should be controlled in real-time based on sensed information from the process, in particular the molten pool. Thus, the molten pool-process relations are of preliminary importance. This paper analyzes experimentally collected in situ sensing data from the molten pool under a set of controlled process parameters in a WLAM system. The variations in the steady-state and transient state of the molten pool are presented with respect to the change of independent process parameters. A multi-modality convolutional neural network (CNN) architecture is proposed for predicting the control parameter directly from the measurable molten pool sensor data for achieving desired geometric and microstructural properties. Dropout and regularization are applied to the CNN architecture to avoid the problem of overfitting. The results highlighted that the multi-modal CNN, which receives temperature profile as an external feature to the features extracted from the image data, has improved prediction performance compared to the image-based uni-modality CNN approach.