Goto

Collaborating Authors

 Liu, Rui


Robust Safety Critical Control Under Multiple State and Input Constraints: Volume Control Barrier Function Method

arXiv.org Artificial Intelligence

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS Robust Safety Critical Control Under Multiple State and Input Constraints: Volume Control Barrier Function Method Jinyang Dong, Shizhen Wu, Rui Liu, Xiao Liang, Senior Member, IEEE, Biao Lu, Member, IEEE, and Y ongchun Fang, Senior Member, IEEE Abstract --In this paper, the safety-critical control problem for uncertain systems under multiple control barrier function (CBF) constraints and input constraints is investigated. A novel framework is proposed to generate a safety filter that minimizes changes to reference inputs when safety risks arise, ensuring a balance between safety and performance. A nonlinear disturbance observer (DOB) based on the robust integral of the sign of the error (RISE) is used to estimate system uncertainties, ensuring that the estimation error converges to zero exponentially. This error bound is integrated into the safety-critical controller to reduce conservativeness while ensuring safety. To further address the challenges arising from multiple CBF and input constraints, a novel Volume CBF (VCBF) is proposed by analyzing the feasible space of the quadratic programming (QP) problem. To ensure that the feasible space does not vanish under disturbances, a DOB-VCBF-based method is introduced, ensuring system safety while maintaining the feasibility of the resulting QP . Subsequently, several groups of simulation and experimental results are provided to validate the effectiveness of the proposed controller. I NTRODUCTION A S automation systems have become integral to our daily lives, the development of safe and high-performance controllers for these systems is of paramount importance. To meet this need, the Control Barrier Function (CBF) is a powerful tool to ensure the safety of control systems [1].


MSCMHMST: A traffic flow prediction model based on Transformer

arXiv.org Artificial Intelligence

This study proposes a hybrid model based on Transformers, named MSCMHMST, aimed at addressing key challenges in traffic flow prediction. Traditional single-method approaches show limitations in traffic prediction tasks, whereas hybrid methods, by integrating the strengths of different models, can provide more accurate and robust predictions. The MSCMHMST model introduces a multi-head, multi-scale attention mechanism, allowing the model to parallel process different parts of the data and learn its intrinsic representations from multiple perspectives, thereby enhancing the model's ability to handle complex situations. This mechanism enables the model to capture features at various scales effectively, understanding both short-term changes and long-term trends. Verified through experiments on the PeMS04/08 dataset with specific experimental settings, the MSCMHMST model demonstrated excellent robustness and accuracy in long, medium, and short-term traffic flow predictions. The results indicate that this model has significant potential, offering a new and effective solution for the field of traffic flow prediction.


Sparse Alignment Enhanced Latent Diffusion Transformer for Zero-Shot Speech Synthesis

arXiv.org Artificial Intelligence

While recent zero-shot text-to-speech (TTS) models have significantly improved speech quality and expressiveness, mainstream systems still suffer from issues related to speech-text alignment modeling: 1) models without explicit speech-text alignment modeling exhibit less robustness, especially for hard sentences in practical applications; 2) predefined alignment-based models suffer from naturalness constraints of forced alignments. This paper introduces \textit{S-DiT}, a TTS system featuring an innovative sparse alignment algorithm that guides the latent diffusion transformer (DiT). Specifically, we provide sparse alignment boundaries to S-DiT to reduce the difficulty of alignment learning without limiting the search space, thereby achieving high naturalness. Moreover, we employ a multi-condition classifier-free guidance strategy for accent intensity adjustment and adopt the piecewise rectified flow technique to accelerate the generation process. Experiments demonstrate that S-DiT achieves state-of-the-art zero-shot TTS speech quality and supports highly flexible control over accent intensity. Notably, our system can generate high-quality one-minute speech with only 8 sampling steps. Audio samples are available at https://sditdemo.github.io/sditdemo/.


AUKT: Adaptive Uncertainty-Guided Knowledge Transfer with Conformal Prediction

arXiv.org Artificial Intelligence

Knowledge transfer between teacher and student models has proven effective across various machine learning applications. However, challenges arise when the teacher's predictions are noisy, or the data domain during student training shifts from the teacher's pretraining data. In such scenarios, blindly relying on the teacher's predictions can lead to suboptimal knowledge transfer. To address these challenges, we propose a novel and universal framework, Adaptive Uncertainty-guided Knowledge Transfer ($\textbf{AUKT}$), which leverages Conformal Prediction (CP) to dynamically adjust the student's reliance on the teacher's guidance based on the teacher's prediction uncertainty. CP is a distribution-free, model-agnostic approach that provides reliable prediction sets with statistical coverage guarantees and minimal computational overhead. This adaptive mechanism mitigates the risk of learning undesirable or incorrect knowledge. We validate the proposed framework across diverse applications, including image classification, imitation-guided reinforcement learning, and autonomous driving. Experimental results consistently demonstrate that our approach improves performance, robustness and transferability, offering a promising direction for enhanced knowledge transfer in real-world applications.


CAML: Collaborative Auxiliary Modality Learning for Multi-Agent Systems

arXiv.org Artificial Intelligence

Multi-modality learning has become a crucial technique for improving the performance of machine learning applications across domains such as autonomous driving, robotics, and perception systems. While existing frameworks such as Auxiliary Modality Learning (AML) effectively utilize multiple data sources during training and enable inference with reduced modalities, they primarily operate in a single-agent context. This limitation is particularly critical in dynamic environments, such as connected autonomous vehicles (CAV), where incomplete data coverage can lead to decision-making blind spots. To address these challenges, we propose Collaborative Auxiliary Modality Learning ($\textbf{CAML}$), a novel multi-agent multi-modality framework that enables agents to collaborate and share multimodal data during training while allowing inference with reduced modalities per agent during testing. We systematically analyze the effectiveness of $\textbf{CAML}$ from the perspective of uncertainty reduction and data coverage, providing theoretical insights into its advantages over AML. Experimental results in collaborative decision-making for CAV in accident-prone scenarios demonstrate that \ours~achieves up to a ${\bf 58.13}\%$ improvement in accident detection. Additionally, we validate $\textbf{CAML}$ on real-world aerial-ground robot data for collaborative semantic segmentation, achieving up to a ${\bf 10.61}\%$ improvement in mIoU.


Return of the Encoder: Maximizing Parameter Efficiency for SLMs

arXiv.org Artificial Intelligence

The dominance of large decoder-only language models has overshadowed encoder-decoder architectures, despite their fundamental efficiency advantages in sequence processing. For small language models (SLMs) - those with 1 billion parameters or fewer - our systematic analysis across GPU, CPU, and NPU platforms reveals that encoder-decoder architectures achieve 47% lower first-token latency and 4.7x higher throughput compared to decoder-only models on edge devices. These gains may be attributed to encoder-decoder's one-time input processing and efficient separation of understanding and generation phases. We introduce a novel knowledge distillation framework that enables encoder-decoder models to leverage capabilities from large scalable decoder-only teachers while preserving their architectural advantages, achieving up to 6 average performance points improvement across diverse tasks, with significant gains in asymmetric sequence tasks where input and output distributions can benefit from different processing approaches. When combined with modern advances like Rotary Positional Embeddings (RoPE) and Vision encoders, our systematic investigation demonstrates that encoder-decoder architectures provide a more practical path toward deploying capable language models in resource-constrained environments. Our findings challenge the prevailing trend toward decoder-only scaling, showing that architectural choices become increasingly crucial as parameter budgets decrease, particularly for on-device and edge deployments where computational efficiency is paramount.


Panacea: Mitigating Harmful Fine-tuning for Large Language Models via Post-fine-tuning Perturbation

arXiv.org Artificial Intelligence

Harmful fine-tuning attack introduces significant security risks to the fine-tuning services. Mainstream defenses aim to vaccinate the model such that the later harmful fine-tuning attack is less effective. However, our evaluation results show that such defenses are fragile -- with a few fine-tuning steps, the model still can learn the harmful knowledge. To this end, we do further experiment and find that an embarrassingly simple solution -- adding purely random perturbations to the fine-tuned model, can recover the model from harmful behavior, though it leads to a degradation in the model's fine-tuning performance. To address the degradation of fine-tuning performance, we further propose Panacea, which optimizes an adaptive perturbation that will be applied to the model after fine-tuning. Panacea maintains model's safety alignment performance without compromising downstream fine-tuning performance. Comprehensive experiments are conducted on different harmful ratios, fine-tuning tasks and mainstream LLMs, where the average harmful scores are reduced by up-to 21.5%, while maintaining fine-tuning performance. As a by-product, we analyze the optimized perturbation and show that different layers in various LLMs have distinct safety coefficients. Source code available at https://github.com/w-yibo/Panacea


Ultralow-dimensionality reduction for identifying critical transitions by spatial-temporal PCA

arXiv.org Machine Learning

Discovering dominant patterns and exploring dynamic behaviors especially critical state transitions and tipping points in high-dimensional time-series data are challenging tasks in study of real-world complex systems, which demand interpretable data representations to facilitate comprehension of both spatial and temporal information within the original data space. Here, we proposed a general and analytical ultralow-dimensionality reduction method for dynamical systems named spatial-temporal principal component analysis (stPCA) to fully represent the dynamics of a high-dimensional time-series by only a single latent variable without distortion, which transforms high-dimensional spatial information into one-dimensional temporal information based on nonlinear delay-embedding theory. The dynamics of this single variable is analytically solved and theoretically preserves the temporal property of original high-dimensional time-series, thereby accurately and reliably identifying the tipping point before an upcoming critical transition. Its applications to real-world datasets such as individual-specific heterogeneous ICU records demonstrated the effectiveness of stPCA, which quantitatively and robustly provides the early-warning signals of the critical/tipping state on each patient.


Multi-modal and Multi-scale Spatial Environment Understanding for Immersive Visual Text-to-Speech

arXiv.org Artificial Intelligence

Visual Text-to-Speech (VTTS) aims to take the environmental image as the prompt to synthesize the reverberant speech for the spoken content. The challenge of this task lies in understanding the spatial environment from the image. Many attempts have been made to extract global spatial visual information from the RGB space of an spatial image. However, local and depth image information are crucial for understanding the spatial environment, which previous works have ignored. To address the issues, we propose a novel multi-modal and multi-scale spatial environment understanding scheme to achieve immersive VTTS, termed M2SE-VTTS. The multi-modal aims to take both the RGB and Depth spaces of the spatial image to learn more comprehensive spatial information, and the multi-scale seeks to model the local and global spatial knowledge simultaneously. Specifically, we first split the RGB and Depth images into patches and adopt the Gemini-generated environment captions to guide the local spatial understanding. After that, the multi-modal and multi-scale features are integrated by the local-aware global spatial understanding. In this way, M2SE-VTTS effectively models the interactions between local and global spatial contexts in the multi-modal spatial environment. Objective and subjective evaluations suggest that our model outperforms the advanced baselines in environmental speech generation. The code and audio samples are available at: https://github.com/AI-S2-Lab/M2SE-VTTS.


Retrieval-Augmented Dialogue Knowledge Aggregation for Expressive Conversational Speech Synthesis

arXiv.org Artificial Intelligence

Conversational speech synthesis (CSS) aims to take the current dialogue (CD) history as a reference to synthesize expressive speech that aligns with the conversational style. Unlike CD, stored dialogue (SD) contains preserved dialogue fragments from earlier stages of user-agent interaction, which include style expression knowledge relevant to scenarios similar to those in CD. Note that this knowledge plays a significant role in enabling the agent to synthesize expressive conversational speech that generates empathetic feedback. However, prior research has overlooked this aspect. To address this issue, we propose a novel Retrieval-Augmented Dialogue Knowledge Aggregation scheme for expressive CSS, termed RADKA-CSS, which includes three main components: 1) To effectively retrieve dialogues from SD that are similar to CD in terms of both semantic and style. First, we build a stored dialogue semantic-style database (SDSSD) which includes the text and audio samples. Then, we design a multi-attribute retrieval scheme to match the dialogue semantic and style vectors of the CD with the stored dialogue semantic and style vectors in the SDSSD, retrieving the most similar dialogues. 2) To effectively utilize the style knowledge from CD and SD, we propose adopting the multi-granularity graph structure to encode the dialogue and introducing a multi-source style knowledge aggregation mechanism. 3) Finally, the aggregated style knowledge are fed into the speech synthesizer to help the agent synthesize expressive speech that aligns with the conversational style. We conducted a comprehensive and in-depth experiment based on the DailyTalk dataset, which is a benchmarking dataset for the CSS task. Both objective and subjective evaluations demonstrate that RADKA-CSS outperforms baseline models in expressiveness rendering. Code and audio samples can be found at: https://github.com/Coder-jzq/RADKA-CSS.