Liu, Risheng
Advancing Generalized Transfer Attack with Initialization Derived Bilevel Optimization and Dynamic Sequence Truncation
Liu, Yaohua, Gao, Jiaxin, Liu, Xuan, Jiao, Xianghao, Fan, Xin, Liu, Risheng
Transfer attacks generate significant interest for real-world black-box applications by crafting transferable adversarial examples through surrogate models. Whereas, existing works essentially directly optimize the single-level objective w.r.t. the surrogate model, which always leads to poor interpretability of attack mechanism and limited generalization performance over unknown victim models. In this work, we propose the \textbf{B}il\textbf{E}vel \textbf{T}ransfer \textbf{A}ttac\textbf{K} (BETAK) framework by establishing an initialization derived bilevel optimization paradigm, which explicitly reformulates the nested constraint relationship between the Upper-Level (UL) pseudo-victim attacker and the Lower-Level (LL) surrogate attacker. Algorithmically, we introduce the Hyper Gradient Response (HGR) estimation as an effective feedback for the transferability over pseudo-victim attackers, and propose the Dynamic Sequence Truncation (DST) technique to dynamically adjust the back-propagation path for HGR and reduce computational overhead simultaneously. Meanwhile, we conduct detailed algorithmic analysis and provide convergence guarantee to support non-convexity of the LL surrogate attacker. Extensive evaluations demonstrate substantial improvement of BETAK (e.g., $\mathbf{53.41}$\% increase of attack success rates against IncRes-v$2_{ens}$) against different victims and defense methods in targeted and untargeted attack scenarios. The source code is available at https://github.com/callous-youth/BETAK.
Moreau Envelope for Nonconvex Bi-Level Optimization: A Single-loop and Hessian-free Solution Strategy
Liu, Risheng, Liu, Zhu, Yao, Wei, Zeng, Shangzhi, Zhang, Jin
This work focuses on addressing two major challenges in the context of large-scale nonconvex Bi-Level Optimization (BLO) problems, which are increasingly applied in machine learning due to their ability to model nested structures. These challenges involve ensuring computational efficiency and providing theoretical guarantees. While recent advances in scalable BLO algorithms have primarily relied on lower-level convexity simplification, our work specifically tackles large-scale BLO problems involving nonconvexity in both the upper and lower levels. We simultaneously address computational and theoretical challenges by introducing an innovative single-loop gradient-based algorithm, utilizing the Moreau envelope-based reformulation, and providing non-asymptotic convergence analysis for general nonconvex BLO problems. Notably, our algorithm relies solely on first-order gradient information, enhancing its practicality and efficiency, especially for large-scale BLO learning tasks. We validate our approach's effectiveness through experiments on various synthetic problems, two typical hyper-parameter learning tasks, and a real-world neural architecture search application, collectively demonstrating its superior performance.
Learn from the Past: A Proxy based Adversarial Defense Framework to Boost Robustness
Liu, Yaohua, Gao, Jiaxin, Liu, Zhu, Jiao, Xianghao, Fan, Xin, Liu, Risheng
In light of the vulnerability of deep learning models to adversarial samples and the ensuing security issues, a range of methods, including Adversarial Training (AT) as a prominent representative, aimed at enhancing model robustness against various adversarial attacks, have seen rapid development. However, existing methods essentially assist the current state of target model to defend against parameter-oriented adversarial attacks with explicit or implicit computation burdens, which also suffers from unstable convergence behavior due to inconsistency of optimization trajectories. Diverging from previous work, this paper reconsiders the update rule of target model and corresponding deficiency to defend based on its current state. By introducing the historical state of the target model as a proxy, which is endowed with much prior information for defense, we formulate a two-stage update rule, resulting in a general adversarial defense framework, which we refer to as `LAST' ({\bf L}earn from the P{\bf ast}). Besides, we devise a Self Distillation (SD) based defense objective to constrain the update process of the proxy model without the introduction of larger teacher models. Experimentally, we demonstrate consistent and significant performance enhancements by refining a series of single-step and multi-step AT methods (e.g., up to $\bf 9.2\%$ and $\bf 20.5\%$ improvement of Robust Accuracy (RA) on CIFAR10 and CIFAR100 datasets, respectively) across various datasets, backbones and attack modalities, and validate its ability to enhance training stability and ameliorate catastrophic overfitting issues meanwhile.
Hierarchical Optimization-Derived Learning
Liu, Risheng, Liu, Xuan, Zeng, Shangzhi, Zhang, Jin, Zhang, Yixuan
In recent years, by utilizing optimization techniques to formulate the propagation of deep model, a variety of so-called Optimization-Derived Learning (ODL) approaches have been proposed to address diverse learning and vision tasks. Although having achieved relatively satisfying practical performance, there still exist fundamental issues in existing ODL methods. In particular, current ODL methods tend to consider model construction and learning as two separate phases, and thus fail to formulate their underlying coupling and depending relationship. In this work, we first establish a new framework, named Hierarchical ODL (HODL), to simultaneously investigate the intrinsic behaviors of optimization-derived model construction and its corresponding learning process. Then we rigorously prove the joint convergence of these two sub-tasks, from the perspectives of both approximation quality and stationary analysis. To our best knowledge, this is the first theoretical guarantee for these two coupled ODL components: optimization and learning. We further demonstrate the flexibility of our framework by applying HODL to challenging learning tasks, which have not been properly addressed by existing ODL methods. Finally, we conduct extensive experiments on both synthetic data and real applications in vision and other learning tasks to verify the theoretical properties and practical performance of HODL in various application scenarios.
Automated Learning for Deformable Medical Image Registration by Jointly Optimizing Network Architectures and Objective Functions
Fan, Xin, Li, Zi, Li, Ziyang, Wang, Xiaolin, Liu, Risheng, Luo, Zhongxuan, Huang, Hao
Deformable image registration plays a critical role in various tasks of medical image analysis. A successful registration algorithm, either derived from conventional energy optimization or deep networks requires tremendous efforts from computer experts to well design registration energy or to carefully tune network architectures for the specific type of medical data. To tackle the aforementioned problems, this paper proposes an automated learning registration algorithm (AutoReg) that cooperatively optimizes both architectures and their corresponding training objectives, enabling non-computer experts, e.g., medical/clinical users, to conveniently find off-the-shelf registration algorithms for diverse scenarios. Specifically, we establish a triple-level framework to deduce registration network architectures and objectives with an auto-searching mechanism and cooperating optimization. We conduct image registration experiments on multi-site volume datasets and various registration tasks. Extensive results demonstrate that our AutoReg may automatically learn an optimal deep registration network for given volumes and achieve state-of-the-art performance, also significantly improving computation efficiency than the mainstream UNet architectures (from 0.558 to 0.270 seconds for a 3D image pair on the same configuration).
Averaged Method of Multipliers for Bi-Level Optimization without Lower-Level Strong Convexity
Liu, Risheng, Liu, Yaohua, Yao, Wei, Zeng, Shangzhi, Zhang, Jin
Gradient methods have become mainstream techniques for Bi-Level Optimization (BLO) in learning fields. The validity of existing works heavily rely on either a restrictive Lower-Level Strong Convexity (LLSC) condition or on solving a series of approximation subproblems with high accuracy or both. In this work, by averaging the upper and lower level objectives, we propose a single loop Bi-level Averaged Method of Multipliers (sl-BAMM) for BLO that is simple yet efficient for large-scale BLO and gets rid of the limited LLSC restriction. We further provide non-asymptotic convergence analysis of sl-BAMM towards KKT stationary points, and the comparative advantage of our analysis lies in the absence of strong gradient boundedness assumption, which is always required by others. Thus our theory safely captures a wider variety of applications in deep learning, especially where the upper-level objective is quadratic w.r.t. the lower-level variable. Experimental results demonstrate the superiority of our method.
Value-Function-based Sequential Minimization for Bi-level Optimization
Liu, Risheng, Liu, Xuan, Zeng, Shangzhi, Zhang, Jin, Zhang, Yixuan
Gradient-based Bi-Level Optimization (BLO) methods have been widely applied to handle modern learning tasks. However, most existing strategies are theoretically designed based on restrictive assumptions (e.g., convexity of the lower-level sub-problem), and computationally not applicable for high-dimensional tasks. Moreover, there are almost no gradient-based methods able to solve BLO in those challenging scenarios, such as BLO with functional constraints and pessimistic BLO. In this work, by reformulating BLO into approximated single-level problems, we provide a new algorithm, named Bi-level Value-Function-based Sequential Minimization (BVFSM), to address the above issues. Specifically, BVFSM constructs a series of value-function-based approximations, and thus avoids repeated calculations of recurrent gradient and Hessian inverse required by existing approaches, time-consuming especially for high-dimensional tasks. We also extend BVFSM to address BLO with additional functional constraints. More importantly, BVFSM can be used for the challenging pessimistic BLO, which has never been properly solved before. In theory, we prove the asymptotic convergence of BVFSM on these types of BLO, in which the restrictive lower-level convexity assumption is discarded. To our best knowledge, this is the first gradient-based algorithm that can solve different kinds of BLO (e.g., optimistic, pessimistic, and with constraints) with solid convergence guarantees. Extensive experiments verify the theoretical investigations and demonstrate our superiority on various real-world applications.
BOML: A Modularized Bilevel Optimization Library in Python for Meta Learning
Liu, Yaohua, Liu, Risheng
There are now many meta-learning methods, each focusing on different modeling aspects of base and meta learners, but all can be (re)formulated as specific bilevel optimization problems. This work presents BOML, a modularized optimization library that unifies several meta-learning algorithms into a common bilevel optimization framework. It provides a hierarchical optimization pipeline together with a variety of iteration modules, which can be used to solve the mainstream categories of meta-learning methods, such as meta-feature-based and meta-initialization-based formulations.
A Generic First-Order Algorithmic Framework for Bi-Level Programming Beyond Lower-Level Singleton
Liu, Risheng, Mu, Pan, Yuan, Xiaoming, Zeng, Shangzhi, Zhang, Jin
In recent years, a variety of gradient-based first-order methods have been developed to solve bi-level optimization problems for learning applications. However, theoretical guarantees of these existing approaches heavily rely on the simplification that for each fixed upper-level variable, the lower-level solution must be a singleton (a.k.a., Lower-Level Singleton, LLS). In this work, we first design a counter-example to illustrate the invalidation of such LLS condition. Then by formulating BLPs from the view point of optimistic bi-level and aggregating hierarchical objective information, we establish Bi-level Descent Aggregation (BDA), a flexible and modularized algorithmic framework for generic bi-level optimization. Theoretically, we derive a new methodology to prove the convergence of BDA without the LLS condition. Our investigations also demonstrate that BDA is indeed compatible to a verify of particular first-order computation modules. Additionally, as an interesting byproduct, we also improve these conventional first-order bi-level schemes (under the LLS simplification). Particularly, we establish their convergences with weaker assumptions. Extensive experiments justify our theoretical results and demonstrate the superiority of the proposed BDA for different tasks, including hyper-parameter optimization and meta learning.
A Bridging Framework for Model Optimization and Deep Propagation
Liu, Risheng, Cheng, Shichao, liu, xiaokun, Ma, Long, Fan, Xin, Luo, Zhongxuan
Optimizing task-related mathematical model is one of the most fundamental methodologies in statistic and learning areas. However, generally designed schematic iterations may hard to investigate complex data distributions in real-world applications. Recently, training deep propagations (i.e., networks) has gained promising performance in some particular tasks. Unfortunately, existing networks are often built in heuristic manners, thus lack of principled interpretations and solid theoretical supports. In this work, we provide a new paradigm, named Propagation and Optimization based Deep Model (PODM), to bridge the gaps between these different mechanisms (i.e., model optimization and deep propagation). On the one hand, we utilize PODM as a deeply trained solver for model optimization. Different from these existing network based iterations, which often lack theoretical investigations, we provide strict convergence analysis for PODM in the challenging nonconvex and nonsmooth scenarios. On the other hand, by relaxing the model constraints and performing end-to-end training, we also develop a PODM based strategy to integrate domain knowledge (formulated as models) and real data distributions (learned by networks), resulting in a generic ensemble framework for challenging real-world applications. Extensive experiments verify our theoretical results and demonstrate the superiority of PODM against these state-of-the-art approaches.