Goto

Collaborating Authors

 Liu, Pengkun


Text Semantics to Flexible Design: A Residential Layout Generation Method Based on Stable Diffusion Model

arXiv.org Artificial Intelligence

Flexibility in the AI-based residential layout design remains a significant challenge, as traditional methods like rule-based heuristics and graph-based generation often lack flexibility and require substantial design knowledge from users. To address these limitations, we propose a cross-modal design approach based on the Stable Diffusion model for generating flexible residential layouts. The method offers multiple input types for learning objectives, allowing users to specify both boundaries and layouts. It incorporates natural language as design constraints and introduces ControlNet to enable stable layout generation through two distinct pathways. We also present a scheme that encapsulates design expertise within a knowledge graph and translates it into natural language, providing an interpretable representation of design knowledge. This comprehensibility and diversity of input options enable professionals and non-professionals to directly express design requirements, enhancing flexibility and controllability. Finally, experiments verify the flexibility of the proposed methods under multimodal constraints better than state-of-the-art models, even when specific semantic information about room areas or connections is incomplete.


Isotropic3D: Image-to-3D Generation Based on a Single CLIP Embedding

arXiv.org Artificial Intelligence

Encouraged by the growing availability of pre-trained 2D diffusion models, image-to-3D generation by leveraging Score Distillation Sampling (SDS) is making remarkable progress. Most existing methods combine novel-view lifting from 2D diffusion models which usually take the reference image as a condition while applying hard L2 image supervision at the reference view. Yet heavily adhering to the image is prone to corrupting the inductive knowledge of the 2D diffusion model leading to flat or distorted 3D generation frequently. In this work, we reexamine image-to-3D in a novel perspective and present Isotropic3D, an image-to-3D generation pipeline that takes only an image CLIP embedding as input. Isotropic3D allows the optimization to be isotropic w.r.t. the azimuth angle by solely resting on the SDS loss. The core of our framework lies in a two-stage diffusion model fine-tuning. Firstly, we fine-tune a text-to-3D diffusion model by substituting its text encoder with an image encoder, by which the model preliminarily acquires image-to-image capabilities. Secondly, we perform fine-tuning using our Explicit Multi-view Attention (EMA) which combines noisy multi-view images with the noise-free reference image as an explicit condition. CLIP embedding is sent to the diffusion model throughout the whole process while reference images are discarded once after fine-tuning. As a result, with a single image CLIP embedding, Isotropic3D is capable of generating multi-view mutually consistent images and also a 3D model with more symmetrical and neat content, well-proportioned geometry, rich colored texture, and less distortion compared with existing image-to-3D methods while still preserving the similarity to the reference image to a large extent. The project page is available at https://isotropic3d.github.io/. The code and models are available at https://github.com/pkunliu/Isotropic3D.