Liu, Pengjie
MUSE: Integrating Multi-Knowledge for Knowledge Graph Completion
Liu, Pengjie
Knowledge Graph Completion (KGC) aims to predict the missing [relation] part of (head entity)--[relation]->(tail entity) triplet. Most existing KGC methods focus on single features (e.g., relation types) or sub-graph aggregation. However, they do not fully explore the Knowledge Graph (KG) features and neglect the guidance of external semantic knowledge. To address these shortcomings, we propose a knowledge-aware reasoning model (MUSE), which designs a novel multi-knowledge representation learning mechanism for missing relation prediction. Our model develops a tailored embedding space through three parallel components: 1) Prior Knowledge Learning for enhancing the triplets' semantic representation by fine-tuning BERT; 2) Context Message Passing for enhancing the context messages of KG; 3) Relational Path Aggregation for enhancing the path representation from the head entity to the tail entity. The experimental results show that MUSE significantly outperforms other baselines on four public datasets, achieving over 5.50% H@1 improvement and 4.20% MRR improvement on the NELL995 dataset. The code and datasets will be released via https://github.com/SUSTech-TP/ADMA2024-MUSE.git.
LegalDuet: Learning Effective Representations for Legal Judgment Prediction through a Dual-View Legal Clue Reasoning
Liu, Pengjie, Liu, Zhenghao, Yi, Xiaoyuan, Yang, Liner, Wang, Shuo, Gu, Yu, Yu, Ge, Xie, Xing, Yang, Shuang-hua
Most existing Legal Judgment Prediction (LJP) models focus on discovering the legal triggers in the criminal fact description. However, in real-world scenarios, a professional judge not only needs to assimilate the law case experience that thrives on past sentenced legal judgments but also depends on the professional legal grounded reasoning that learned from professional legal knowledge. In this paper, we propose a LegalDuet model, which pretrains language models to learn a tailored embedding space for making legal judgments. It proposes a dual-view legal clue reasoning mechanism, which derives from two reasoning chains of judges: 1) Law Case Reasoning, which makes legal judgments according to the judgment experiences learned from analogy/confusing legal cases; 2) Legal Ground Reasoning, which lies in matching the legal clues between criminal cases and legal decisions. Our experiments show that LegalDuet achieves state-of-the-art performance on the CAIL2018 dataset and outperforms baselines with about 4% improvements on average. Our dual-view reasoning based pretraining can capture critical legal clues to learn a tailored embedding space to distinguish criminal cases. It reduces LegalDuet's uncertainty during prediction and brings pretraining advances to the confusing/low frequent charges. All codes are available at https://github.com/NEUIR/LegalDuet.