Goto

Collaborating Authors

 Liu, Peize


UniQuad: A Unified and Versatile Quadrotor Platform Series for UAV Research and Application

arXiv.org Artificial Intelligence

As quadrotors take on an increasingly diverse range of roles, researchers often need to develop new hardware platforms tailored for specific tasks, introducing significant engineering overhead. In this article, we introduce the UniQuad series, a unified and versatile quadrotor platform series that offers high flexibility to adapt to a wide range of common tasks, excellent customizability for advanced demands, and easy maintenance in case of crashes. This project is fully open-source at https://hkust-aerial-robotics.github.io/UniQuad.


OmniNxt: A Fully Open-source and Compact Aerial Robot with Omnidirectional Visual Perception

arXiv.org Artificial Intelligence

Adopting omnidirectional Field of View (FoV) cameras in aerial robots vastly improves perception ability, significantly advancing aerial robotics's capabilities in inspection, reconstruction, and rescue tasks. However, such sensors also elevate system complexity, e.g., hardware design, and corresponding algorithm, which limits researchers from utilizing aerial robots with omnidirectional FoV in their research. To bridge this gap, we propose OmniNxt, a fully open-source aerial robotics platform with omnidirectional perception. We design a high-performance flight controller NxtPX4 and a multi-fisheye camera set for OmniNxt. Meanwhile, the compatible software is carefully devised, which empowers OmniNxt to achieve accurate localization and real-time dense mapping with limited computation resource occupancy. We conducted extensive real-world experiments to validate the superior performance of OmniNxt in practical applications. All the hardware and software are open-access at https://github.com/HKUST-Aerial-Robotics/OmniNxt, and we provide docker images of each crucial module in the proposed system. Project page: https://hkust-aerial-robotics.github.io/OmniNxt.


H2-Mapping: Real-time Dense Mapping Using Hierarchical Hybrid Representation

arXiv.org Artificial Intelligence

Constructing a high-quality dense map in real-time is essential for robotics, AR/VR, and digital twins applications. As Neural Radiance Field (NeRF) greatly improves the mapping performance, in this paper, we propose a NeRF-based mapping method that enables higher-quality reconstruction and real-time capability even on edge computers. Specifically, we propose a novel hierarchical hybrid representation that leverages implicit multiresolution hash encoding aided by explicit octree SDF priors, describing the scene at different levels of detail. This representation allows for fast scene geometry initialization and makes scene geometry easier to learn. Besides, we present a coverage-maximizing keyframe selection strategy to address the forgetting issue and enhance mapping quality, particularly in marginal areas. To the best of our knowledge, our method is the first to achieve high-quality NeRF-based mapping on edge computers of handheld devices and quadrotors in real-time. Experiments demonstrate that our method outperforms existing NeRF-based mapping methods in geometry accuracy, texture realism, and time consumption. The code will be released at: https://github.com/SYSU-STAR/H2-Mapping


$D^2$SLAM: Decentralized and Distributed Collaborative Visual-inertial SLAM System for Aerial Swarm

arXiv.org Artificial Intelligence

A crucial technology in fully autonomous aerial swarms is collaborative SLAM (CSLAM), which enables the estimation of relative pose and global consistent trajectories of aerial robots. However, existing CSLAM systems do not prioritize relative localization accuracy, critical for close collaboration among UAVs. This paper presents $D^2$SLAM, a novel decentralized and distributed ($D^2$) CSLAM system that covers two scenarios: near-field estimation for high accuracy state estimation in close range and far-field estimation for consistent global trajectory estimation. $D^2$SLAM has a versatile and powerful front-end that can use stereo cameras or omnidirectional cameras as input, the former being easy to obtain and the latter being an excellent solution to the Field of View problem in relative localization. Our experiments verify $D^2$SLAM achieves high accuracy in ego-motion estimation, relative localization, and global consistency. Moreover, distributed optimization algorithms are adopted to achieve the $D^2$ objective to allow the scale-up of the swarm and ensure robustness against network delays. We argue $D^2$SLAM can be applied in a wide range of real-world applications.