Goto

Collaborating Authors

 Liu, Min


Fidelity-Imposed Displacement Editing for the Learn2Reg 2024 SHG-BF Challenge

arXiv.org Artificial Intelligence

To address these challenges, we propose a novel SHG-BF Co-examination of second-harmonic generation (SHG) and multimodal registration method with the following key contributions: bright-field (BF) microscopy enables the differentiation of tissue components and collagen fibers, aiding the analysis of human 1. Batch-wise contrastive loss (B-NCE): We introduce a breast and pancreatic cancer tissues. However, large discrepancies batch-wise noise contrastive estimation loss to effectively between SHG and BF images pose challenges for capture shared features between SHG and BF images.


ReLU neural network approximation to piecewise constant functions

arXiv.org Artificial Intelligence

This paper studies the approximation property of ReLU neural networks (NNs) to piecewise constant functions with unknown interfaces in bounded regions in $\mathbb{R}^d$. Under the assumption that the discontinuity interface $\Gamma$ may be approximated by a connected series of hyperplanes with a prescribed accuracy $\varepsilon >0$, we show that a three-layer ReLU NN is sufficient to accurately approximate any piecewise constant function and establish its error bound. Moreover, if the discontinuity interface is convex, an analytical formula of the ReLU NN approximation with exact weights and biases is provided.


FACET: Fast and Accurate Event-Based Eye Tracking Using Ellipse Modeling for Extended Reality

arXiv.org Artificial Intelligence

Eye tracking is a key technology for gaze-based interactions in Extended Reality (XR), but traditional frame-based systems struggle to meet XR's demands for high accuracy, low latency, and power efficiency. Event cameras offer a promising alternative due to their high temporal resolution and low power consumption. In this paper, we present FACET (Fast and Accurate Event-based Eye Tracking), an end-to-end neural network that directly outputs pupil ellipse parameters from event data, optimized for real-time XR applications. The ellipse output can be directly used in subsequent ellipse-based pupil trackers. We enhance the EV-Eye dataset by expanding annotated data and converting original mask labels to ellipse-based annotations to train the model. Besides, a novel trigonometric loss is adopted to address angle discontinuities and a fast causal event volume event representation method is put forward. On the enhanced EV-Eye test set, FACET achieves an average pupil center error of 0.20 pixels and an inference time of 0.53 ms, reducing pixel error and inference time by 1.6$\times$ and 1.8$\times$ compared to the prior art, EV-Eye, with 4.4$\times$ and 11.7$\times$ less parameters and arithmetic operations. The code is available at https://github.com/DeanJY/FACET.


FedCache 2.0: Exploiting the Potential of Distilled Data in Knowledge Cache-driven Federated Learning

arXiv.org Artificial Intelligence

Federated Edge Learning (FEL) has emerged as a promising approach for enabling edge devices to collaboratively train machine learning models while preserving data privacy. Despite its advantages, practical FEL deployment faces significant challenges related to device constraints and device-server interactions, necessitating heterogeneous, user-adaptive model training with limited and uncertain communication. In this paper, we introduce FedCache 2.0, a novel personalized FEL architecture that simultaneously addresses these challenges. FedCache 2.0 incorporates the benefits of both dataset distillation and knowledge cache-driven federated learning by storing and organizing distilled data as knowledge in the server-side knowledge cache. Moreover, a device-centric cache sampling strategy is introduced to tailor transferred knowledge for individual devices within controlled communication bandwidth. Extensive experiments on five datasets covering image recognition, audio understanding, and mobile sensor data mining tasks demonstrate that (1) FedCache 2.0 significantly outperforms state-of-the-art methods regardless of model structures, data distributions, and modalities. (2) FedCache 2.0 can train splendid personalized on-device models with at least $\times$28.6 improvement in communication efficiency.


A Survey on Intermediate Fusion Methods for Collaborative Perception Categorized by Real World Challenges

arXiv.org Artificial Intelligence

This survey analyzes intermediate fusion methods in collaborative perception for autonomous driving, categorized by real-world challenges. We examine various methods, detailing their features and the evaluation metrics they employ. The focus is on addressing challenges like transmission efficiency, localization errors, communication disruptions, and heterogeneity. Moreover, we explore strategies to counter adversarial attacks and defenses, as well as approaches to adapt to domain shifts. The objective is to present an overview of how intermediate fusion methods effectively meet these diverse challenges, highlighting their role in advancing the field of collaborative perception in autonomous driving.


Privacy-Enhanced Training-as-a-Service for On-Device Intelligence: Concept, Architectural Scheme, and Open Problems

arXiv.org Artificial Intelligence

On-device intelligence (ODI) enables artificial intelligence (AI) applications to run on end devices, providing real-time and customized AI inference without relying on remote servers. However, training models for on-device deployment face significant challenges due to the decentralized and privacy-sensitive nature of users' data, along with end-side constraints related to network connectivity, computation efficiency, etc. Existing training paradigms, such as cloud-based training, federated learning, and transfer learning, fail to sufficiently address these practical constraints that are prevalent for devices. To overcome these challenges, we propose Privacy-Enhanced Training-as-a-Service (PTaaS), a novel service computing paradigm that provides privacy-friendly, customized AI model training for end devices. PTaaS outsources the core training process to remote and powerful cloud or edge servers, efficiently developing customized on-device models based on uploaded anonymous queries, enhancing data privacy while reducing the computation load on individual devices. We explore the definition, goals, and design principles of PTaaS, alongside emerging technologies that support the PTaaS paradigm. An architectural scheme for PTaaS is also presented, followed by a series of open problems that set the stage for future research directions in the field of PTaaS.


A Structure-Guided Gauss-Newton Method for Shallow ReLU Neural Network

arXiv.org Artificial Intelligence

In this paper, we propose a structure-guided Gauss-Newton (SgGN) method for solving least squares problems using a shallow ReLU neural network. The method effectively takes advantage of both the least squares structure and the neural network structure of the objective function. By categorizing the weights and biases of the hidden and output layers of the network as nonlinear and linear parameters, respectively, the method iterates back and forth between the nonlinear and linear parameters. The nonlinear parameters are updated by a damped Gauss-Newton method and the linear ones are updated by a linear solver. Moreover, at the Gauss-Newton step, a special form of the Gauss-Newton matrix is derived for the shallow ReLU neural network and is used for efficient iterations. It is shown that the corresponding mass and Gauss-Newton matrices in the respective linear and nonlinear steps are symmetric and positive definite under reasonable assumptions. Thus, the SgGN method naturally produces an effective search direction without the need of additional techniques like shifting in the Levenberg-Marquardt method to achieve invertibility of the Gauss-Newton matrix. The convergence and accuracy of the method are demonstrated numerically for several challenging function approximation problems, especially those with discontinuities or sharp transition layers that pose significant challenges for commonly used training algorithms in machine learning.


Personalized Federated Learning for Spatio-Temporal Forecasting: A Dual Semantic Alignment-Based Contrastive Approach

arXiv.org Artificial Intelligence

The existing federated learning (FL) methods for spatio-temporal forecasting fail to capture the inherent spatio-temporal heterogeneity, which calls for personalized FL (PFL) methods to model the spatio-temporally variant patterns. While contrastive learning approach is promising in addressing spatio-temporal heterogeneity, the existing methods are noneffective in determining negative pairs and can hardly apply to PFL paradigm. To tackle this limitation, we propose a novel PFL method, named Federated dUal sEmantic aLignment-based contraStive learning (FUELS), which can adaptively align positive and negative pairs based on semantic similarity, thereby injecting precise spatio-temporal heterogeneity into the latent representation space by auxiliary contrastive tasks. From temporal perspective, a hard negative filtering module is introduced to dynamically align heterogeneous temporal representations for the supplemented intra-client contrastive task. From spatial perspective, we design lightweight-but-efficient prototypes as client-level semantic representations, based on which the server evaluates spatial similarity and yields client-customized global prototypes for the supplemented inter-client contrastive task. Extensive experiments demonstrate that FUELS outperforms state-of-the-art methods, with communication cost decreasing by around 94%.


Spatially Covariant Image Registration with Text Prompts

arXiv.org Artificial Intelligence

Medical images are often characterized by their structured anatomical representations and spatially inhomogeneous contrasts. Leveraging anatomical priors in neural networks can greatly enhance their utility in resource-constrained clinical settings. Prior research has harnessed such information for image segmentation, yet progress in deformable image registration has been modest. Our work introduces textSCF, a novel method that integrates spatially covariant filters and textual anatomical prompts encoded by visual-language models, to fill this gap. This approach optimizes an implicit function that correlates text embeddings of anatomical regions to filter weights, relaxing the typical translation-invariance constraint of convolutional operations. TextSCF not only boosts computational efficiency but can also retain or improve registration accuracy. By capturing the contextual interplay between anatomical regions, it offers impressive inter-regional transferability and the ability to preserve structural discontinuities during registration. TextSCF's performance has been rigorously tested on inter-subject brain MRI and abdominal CT registration tasks, outperforming existing state-of-the-art models in the MICCAI Learn2Reg 2021 challenge and leading the leaderboard. In abdominal registrations, textSCF's larger model variant improved the Dice score by 11.3% over the second-best model, while its smaller variant maintained similar accuracy but with an 89.13% reduction in network parameters and a 98.34\% decrease in computational operations.


Federated Class-Incremental Learning with New-Class Augmented Self-Distillation

arXiv.org Artificial Intelligence

Federated Learning (FL) enables collaborative model training among participants while guaranteeing the privacy of raw data. Mainstream FL methodologies overlook the dynamic nature of real-world data, particularly its tendency to grow in volume and diversify in classes over time. This oversight results in FL methods suffering from catastrophic forgetting, where the trained models inadvertently discard previously learned information upon assimilating new data. In response to this challenge, we propose a novel Federated Class-Incremental Learning (FCIL) method, named \underline{Fed}erated \underline{C}lass-Incremental \underline{L}earning with New-Class \underline{A}ugmented \underline{S}elf-Di\underline{S}tillation (FedCLASS). The core of FedCLASS is to enrich the class scores of historical models with new class scores predicted by current models and utilize the combined knowledge for self-distillation, enabling a more sufficient and precise knowledge transfer from historical models to current models. Theoretical analyses demonstrate that FedCLASS stands on reliable foundations, considering scores of old classes predicted by historical models as conditional probabilities in the absence of new classes, and the scores of new classes predicted by current models as the conditional probabilities of class scores derived from historical models. Empirical experiments demonstrate the superiority of FedCLASS over four baseline algorithms in reducing average forgetting rate and boosting global accuracy.