Liu, Mianxin
BrainMVP: Multi-modal Vision Pre-training for Brain Image Analysis using Multi-parametric MRI
Rui, Shaohao, Chen, Lingzhi, Tang, Zhenyu, Wang, Lilong, Liu, Mianxin, Zhang, Shaoting, Wang, Xiaosong
Accurate diagnosis of brain abnormalities is greatly enhanced by the inclusion of complementary multi-parametric MRI imaging data. There is significant potential to develop a universal pre-training model that can be quickly adapted for image modalities and various clinical scenarios. However, current models often rely on uni-modal image data, neglecting the cross-modal correlations among different image modalities or struggling to scale up pre-training in the presence of missing modality data. In this paper, we propose BrainMVP, a multi-modal vision pre-training framework for brain image analysis using multi-parametric MRI scans. First, we collect 16,022 brain MRI scans (over 2.4 million images), encompassing eight MRI modalities sourced from a diverse range of centers and devices. Then, a novel pre-training paradigm is proposed for the multi-modal MRI data, addressing the issue of missing modalities and achieving multi-modal information fusion. Cross-modal reconstruction is explored to learn distinctive brain image embeddings and efficient modality fusion capabilities. A modality-wise data distillation module is proposed to extract the essence representation of each MR image modality for both the pre-training and downstream application purposes. Furthermore, we introduce a modality-aware contrastive learning module to enhance the cross-modality association within a study. Extensive experiments on downstream tasks demonstrate superior performance compared to state-of-the-art pre-training methods in the medical domain, with Dice Score improvement of 0.28%-14.47% across six segmentation benchmarks and a consistent accuracy improvement of 0.65%-18.07% in four individual classification tasks.
MedBench: A Comprehensive, Standardized, and Reliable Benchmarking System for Evaluating Chinese Medical Large Language Models
Liu, Mianxin, Ding, Jinru, Xu, Jie, Hu, Weiguo, Li, Xiaoyang, Zhu, Lifeng, Bai, Zhian, Shi, Xiaoming, Wang, Benyou, Song, Haitao, Liu, Pengfei, Zhang, Xiaofan, Wang, Shanshan, Li, Kang, Wang, Haofen, Ruan, Tong, Huang, Xuanjing, Sun, Xin, Zhang, Shaoting
Ensuring the general efficacy and goodness for human beings from medical large language models (LLM) before real-world deployment is crucial. However, a widely accepted and accessible evaluation process for medical LLM, especially in the Chinese context, remains to be established. In this work, we introduce "MedBench", a comprehensive, standardized, and reliable benchmarking system for Chinese medical LLM. First, MedBench assembles the currently largest evaluation dataset (300,901 questions) to cover 43 clinical specialties and performs multi-facet evaluation on medical LLM. Second, MedBench provides a standardized and fully automatic cloud-based evaluation infrastructure, with physical separations for question and ground truth. Third, MedBench implements dynamic evaluation mechanisms to prevent shortcut learning and answer remembering. Applying MedBench to popular general and medical LLMs, we observe unbiased, reproducible evaluation results largely aligning with medical professionals' perspectives. This study establishes a significant foundation for preparing the practical applications of Chinese medical LLMs. MedBench is publicly accessible at https://medbench.opencompass.org.cn.
Deep learning reveals the common spectrum underlying multiple brain disorders in youth and elders from brain functional networks
Liu, Mianxin, Zhang, Jingyang, Wang, Yao, Zhou, Yan, Xie, Fang, Guo, Qihao, Shi, Feng, Zhang, Han, Wang, Qian, Shen, Dinggang
Brain disorders in the early and late life of humans potentially share pathological alterations in brain functions. However, the key evidence from neuroimaging data for pathological commonness remains unrevealed. To explore this hypothesis, we build a deep learning model, using multi-site functional magnetic resonance imaging data (N=4,410, 6 sites), for classifying 5 different brain disorders from healthy controls, with a set of common features. Our model achieves 62.6 1.9% overall classification accuracy on data from the 6 investigated sites and detects a set of commonly affected functional subnetworks at different spatial scales, including default mode, executive control, visual, and limbic networks. In the deep-layer feature representation for individual data, we observe young and aging patients with disorders are continuously distributed, which is in line with the clinical concept of the "spectrum of disorders". The revealed spectrum underlying early-and late-life brain disorders promotes the understanding of disorder comorbidities in the lifespan.
Hierarchical Graph Convolutional Network Built by Multiscale Atlases for Brain Disorder Diagnosis Using Functional Connectivity
Liu, Mianxin, Zhang, Han, Shi, Feng, Shen, Dinggang
Functional connectivity network (FCN) data from functional magnetic resonance imaging (fMRI) is increasingly used for the diagnoses of brain disorders. However, state-of-the-art studies used to build the FCN using a single brain parcellation atlas at a certain spatial scale, which largely neglected functional interactions across different spatial scales in hierarchical manners. In this study, we propose a novel framework to perform multiscale FCN analysis for brain disorder diagnosis. We first use a set of well-defined multiscale atlases to compute multiscale FCNs. Then, we utilize biologically meaningful brain hierarchical relationships among the regions in multiscale atlases to perform nodal pooling across multiple spatial scales, namely "Atlas-guided Pooling". Accordingly, we propose a Multiscale-Atlases-based Hierarchical Graph Convolutional Network (MAHGCN), built on the stacked layers of graph convolution and the atlas-guided pooling, for a comprehensive extraction of diagnostic information from multiscale FCNs. Experiments on neuroimaging data from 1792 subjects demonstrate the effectiveness of our proposed method in the diagnoses of Alzheimer's disease (AD), the prodromal stage of AD (i.e., mild cognitive impairment [MCI]), as well as autism spectrum disorder (ASD), with accuracy of 88.9%, 78.6%, and 72.7% respectively. All results show significant advantages of our proposed method over other competing methods. This study not only demonstrates the feasibility of brain disorder diagnosis using resting-state fMRI empowered by deep learning, but also highlights that the functional interactions in the multiscale brain hierarchy are worth being explored and integrated into deep learning network architectures for better understanding the neuropathology of brain disorders.