Liu, Lin
Joint Channel Estimation and Feedback with Masked Token Transformers in Massive MIMO Systems
Zhao, Mingming, Liu, Lin, Liu, Lifu, Li, Mengke, Tian, Qi
The downlink channel state information (CSI) estimation and low overhead acquisition are the major challenges for massive MIMO systems in frequency division duplex to enable high MIMO gain. Recently, numerous studies have been conducted to harness the power of deep neural networks for better channel estimation and feedback. However, existing methods have yet to fully exploit the intrinsic correlation features present in CSI. As a consequence, distinct network structures are utilized for handling these two tasks separately. To achieve joint channel estimation and feedback, this paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix. The entire encoder-decoder network is utilized for channel compression. To effectively capture and restructure correlation features, a self-mask-attention coding is proposed, complemented by an active masking strategy designed to improve efficiency. The channel estimation is achieved through the decoder part, wherein a lightweight multilayer perceptron denoising module is utilized for further accurate estimation. Extensive experiments demonstrate that our method not only outperforms state-of-the-art channel estimation and feedback techniques in joint tasks but also achieves beneficial performance in individual tasks.
Few-Shot Continual Learning via Flat-to-Wide Approaches
Ma'sum, Muhammad Anwar, Pratama, Mahardhika, Lughofer, Edwin, Liu, Lin, Habibullah, null, Kowalczyk, Ryszard
Existing approaches on continual learning call for a lot of samples in their training processes. Such approaches are impractical for many real-world problems having limited samples because of the overfitting problem. This paper proposes a few-shot continual learning approach, termed FLat-tO-WidE AppRoach (FLOWER), where a flat-to-wide learning process finding the flat-wide minima is proposed to address the catastrophic forgetting problem. The issue of data scarcity is overcome with a data augmentation approach making use of a ball generator concept to restrict the sampling space into the smallest enclosing ball. Our numerical studies demonstrate the advantage of FLOWER achieving significantly improved performances over prior arts notably in the small base tasks. For further study, source codes of FLOWER, competitor algorithms and experimental logs are shared publicly in \url{https://github.com/anwarmaxsum/FLOWER}.
Learning Conditional Instrumental Variable Representation for Causal Effect Estimation
Cheng, Debo, Xu, Ziqi, Li, Jiuyong, Liu, Lin, Le, Thuc Duy, Liu, Jixue
One of the fundamental challenges in causal inference is to estimate the causal effect of a treatment on its outcome of interest from observational data. However, causal effect estimation often suffers from the impacts of confounding bias caused by unmeasured confounders that affect both the treatment and the outcome. The instrumental variable (IV) approach is a powerful way to eliminate the confounding bias from latent confounders. However, the existing IV-based estimators require a nominated IV, and for a conditional IV (CIV) the corresponding conditioning set too, for causal effect estimation. This limits the application of IV-based estimators. In this paper, by leveraging the advantage of disentangled representation learning, we propose a novel method, named DVAE.CIV, for learning and disentangling the representations of CIV and the representations of its conditioning set for causal effect estimations from data with latent confounders. Extensive experimental results on both synthetic and real-world datasets demonstrate the superiority of the proposed DVAE.CIV method against the existing causal effect estimators.
Attention Weighted Mixture of Experts with Contrastive Learning for Personalized Ranking in E-commerce
Gong, Juan, Chen, Zhenlin, Ma, Chaoyi, Xiao, Zhuojian, Wang, Haonan, Tang, Guoyu, Liu, Lin, Xu, Sulong, Long, Bo, Jiang, Yunjiang
Ranking model plays an essential role in e-commerce search and recommendation. An effective ranking model should give a personalized ranking list for each user according to the user preference. Existing algorithms usually extract a user representation vector from the user behavior sequence, then feed the vector into a feed-forward network (FFN) together with other features for feature interactions, and finally produce a personalized ranking score. Despite tremendous progress in the past, there is still room for improvement. Firstly, the personalized patterns of feature interactions for different users are not explicitly modeled. Secondly, most of existing algorithms have poor personalized ranking results for long-tail users with few historical behaviors due to the data sparsity. To overcome the two challenges, we propose Attention Weighted Mixture of Experts (AW-MoE) with contrastive learning for personalized ranking. Firstly, AW-MoE leverages the MoE framework to capture personalized feature interactions for different users. To model the user preference, the user behavior sequence is simultaneously fed into expert networks and the gate network. Within the gate network, one gate unit and one activation unit are designed to adaptively learn the fine-grained activation vector for experts using an attention mechanism. Secondly, a random masking strategy is applied to the user behavior sequence to simulate long-tail users, and an auxiliary contrastive loss is imposed to the output of the gate network to improve the model generalization for these users. This is validated by a higher performance gain on the long-tail user test set. Experiment results on a JD real production dataset and a public dataset demonstrate the effectiveness of AW-MoE, which significantly outperforms state-of-art methods. Notably, AW-MoE has been successfully deployed in the JD e-commerce search engine, ...
Causal Effect Estimation with Variational AutoEncoder and the Front Door Criterion
Xu, Ziqi, Cheng, Debo, Li, Jiuyong, Liu, Jixue, Liu, Lin, Yu, Kui
An essential problem in causal inference is estimating causal effects from observational data. The problem becomes more challenging with the presence of unobserved confounders. When there are unobserved confounders, the commonly used back-door adjustment is not applicable. Although the instrumental variable (IV) methods can deal with unobserved confounders, they all assume that the treatment directly affects the outcome, and there is no mediator between the treatment and the outcome. This paper aims to use the front-door criterion to address the challenging problem with the presence of unobserved confounders and mediators. In practice, it is often difficult to identify the set of variables used for front-door adjustment from data. By leveraging the ability of deep generative models in representation learning, we propose FDVAE to learn the representation of a Front-Door adjustment set with a Variational AutoEncoder, instead of trying to search for a set of variables for front-door adjustment. Extensive experiments on synthetic datasets validate the effectiveness of FDVAE and its superiority over existing methods. The experiments also show that the performance of FDVAE is not sensitive to the causal strength of unobserved confounders and is feasible in the case of dimensionality mismatch between learned representations and the ground truth. We further apply the method to three real-world datasets to demonstrate its potential applications.
A Hybrid Deep Feature-Based Deformable Image Registration Method for Pathology Images
Zhang, Chulong, Jiang, Yuming, Li, Na, Zhang, Zhicheng, Islam, Md Tauhidul, Dai, Jingjing, Liu, Lin, He, Wenfeng, Qin, Wenjian, Xiong, Jing, Xie, Yaoqin, Liang, Xiaokun
Pathologists need to combine information from differently stained pathology slices for accurate diagnosis. Deformable image registration is a necessary technique for fusing multi-modal pathology slices. This paper proposes a hybrid deep feature-based deformable image registration framework for stained pathology samples. We first extract dense feature points via the detector-based and detector-free deep learning feature networks and perform points matching. Then, to further reduce false matches, an outlier detection method combining the isolation forest statistical model and the local affine correction model is proposed. Finally, the interpolation method generates the deformable vector field for pathology image registration based on the above matching points. We evaluate our method on the dataset of the Non-rigid Histology Image Registration (ANHIR) challenge, which is co-organized with the IEEE ISBI 2019 conference. Our technique outperforms the traditional approaches by 17% with the Average-Average registration target error (rTRE) reaching 0.0034. The proposed method achieved state-of-the-art performance and ranked 1st in evaluating the test dataset. The proposed hybrid deep feature-based registration method can potentially become a reliable method for pathology image registration.
Linking a predictive model to causal effect estimation
Li, Jiuyong, Liu, Lin, Xu, Ziqi, Tran, Ha Xuan, Le, Thuc Duy, Liu, Jixue
A predictive model makes outcome predictions based on some given features, i.e., it estimates the conditional probability of the outcome given a feature vector. In general, a predictive model cannot estimate the causal effect of a feature on the outcome, i.e., how the outcome will change if the feature is changed while keeping the values of other features unchanged. This is because causal effect estimation requires interventional probabilities. However, many real world problems such as personalised decision making, recommendation, and fairness computing, need to know the causal effect of any feature on the outcome for a given instance. This is different from the traditional causal effect estimation problem with a fixed treatment variable. This paper first tackles the challenge of estimating the causal effect of any feature (as the treatment) on the outcome w.r.t. a given instance. The theoretical results naturally link a predictive model to causal effect estimations and imply that a predictive model is causally interpretable when the conditions identified in the paper are satisfied. The paper also reveals the robust property of a causally interpretable model. We use experiments to demonstrate that various types of predictive models, when satisfying the conditions identified in this paper, can estimate the causal effects of features as accurately as state-of-the-art causal effect estimation methods. We also show the potential of such causally interpretable predictive models for robust predictions and personalised decision making.
Effects of Epileptiform Activity on Discharge Outcome in Critically Ill Patients
Parikh, Harsh, Hoffman, Kentaro, Sun, Haoqi, Ge, Wendong, Jing, Jin, Amerineni, Rajesh, Liu, Lin, Sun, Jimeng, Zafar, Sahar, Struck, Aaron, Volfovsky, Alexander, Rudin, Cynthia, Westover, M. Brandon
Epileptiform activity (EA) is associated with worse outcomes including increased risk of disability and death. However, the effect of EA on the neurologic outcome is confounded by the feedback between treatment with anti-seizure medications (ASM) and EA burden. A randomized clinical trial is challenging due to the sequential nature of EA-ASM feedback, as well as ethical reasons. However, some mechanistic knowledge is available, e.g., how drugs are absorbed. This knowledge together with observational data could provide a more accurate effect estimate using causal inference. We performed a retrospective cross-sectional study with 995 patients with the modified Rankin Scale (mRS) at discharge as the outcome and the EA burden defined as the mean or maximum proportion of time spent with EA in six-hour windows in the first 24 hours of electroencephalography as the exposure. We estimated the change in discharge mRS if everyone in the dataset had experienced a certain EA burden and were untreated. We combined pharmacological modeling with an interpretable matching method to account for confounding and EA-ASM feedback. Our matched groups' quality was validated by the neurologists. Having a maximum EA burden greater than 75% when untreated had a 22% increased chance of a poor outcome (severe disability or death), and mild but long-lasting EA increased the risk of a poor outcome by 14%. The effect sizes were heterogeneous depending on pre-admission profile, e.g., patients with hypoxic-ischemic encephalopathy (HIE) or acquired brain injury (ABI) were more affected. Interventions should put a higher priority on patients with an average EA burden higher than 10%, while treatment should be more conservative when the maximum EA burden is low.
New $\sqrt{n}$-consistent, numerically stable higher-order influence function estimators
Liu, Lin, Li, Chang
Higher-Order Influence Functions (HOIFs) provide a unified theory for constructing rate-optimal estimators for a large class of low-dimensional (smooth) statistical functionals/parameters (and sometimes even infinite-dimensional functions) that arise in substantive fields including epidemiology, economics, and the social sciences. Since the introduction of HOIFs by Robins et al. (2008), they have been viewed mostly as a theoretical benchmark rather than a useful tool for statistical practice. Works aimed to flip the script are scant, but a few recent papers Liu et al. (2017, 2021b) make some partial progress. In this paper, we take a fresh attempt at achieving this goal by constructing new, numerically stable HOIF estimators (or sHOIF estimators for short with ``s'' standing for ``stable'') with provable statistical, numerical, and computational guarantees. This new class of sHOIF estimators (up to the 2nd order) was foreshadowed in synthetic experiments conducted by Liu et al. (2020a).
DeepMed: Semiparametric Causal Mediation Analysis with Debiased Deep Learning
Xu, Siqi, Liu, Lin, Liu, Zhonghua
Causal mediation analysis can unpack the black box of causality and is therefore a powerful tool for disentangling causal pathways in biomedical and social sciences, and also for evaluating machine learning fairness. To reduce bias for estimating Natural Direct and Indirect Effects in mediation analysis, we propose a new method called DeepMed that uses deep neural networks (DNNs) to cross-fit the infinite-dimensional nuisance functions in the efficient influence functions. We obtain novel theoretical results that our DeepMed method (1) can achieve semiparametric efficiency bound without imposing sparsity constraints on the DNN architecture and (2) can adapt to certain low dimensional structures of the nuisance functions, significantly advancing the existing literature on DNN-based semiparametric causal inference. Extensive synthetic experiments are conducted to support our findings and also expose the gap between theory and practice. As a proof of concept, we apply DeepMed to analyze two real datasets on machine learning fairness and reach conclusions consistent with previous findings.