Goto

Collaborating Authors

 Liu, Lihui


THeGCN: Temporal Heterophilic Graph Convolutional Network

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) have exhibited remarkable efficacy in diverse graph learning tasks, particularly on static homophilic graphs. Recent attention has pivoted towards more intricate structures, encompassing (1) static heterophilic graphs encountering the edge heterophily issue in the spatial domain and (2) event-based continuous graphs in the temporal domain. State-of-the-art (SOTA) has been concurrently addressing these two lines of work but tends to overlook the presence of heterophily in the temporal domain, constituting the temporal heterophily issue. Furthermore, we highlight that the edge heterophily issue and the temporal heterophily issue often co-exist in event-based continuous graphs, giving rise to the temporal edge heterophily challenge. To tackle this challenge, this paper first introduces the temporal edge heterophily measurement. Subsequently, we propose the Temporal Heterophilic Graph Convolutional Network (THeGCN), an innovative model that incorporates the low/high-pass graph signal filtering technique to accurately capture both edge (spatial) heterophily and temporal heterophily. Specifically, the THeGCN model consists of two key components: a sampler and an aggregator. The sampler selects events relevant to a node at a given moment. Then, the aggregator executes message-passing, encoding temporal information, node attributes, and edge attributes into node embeddings. Extensive experiments conducted on 5 real-world datasets validate the efficacy of THeGCN.


PyG-SSL: A Graph Self-Supervised Learning Toolkit

arXiv.org Artificial Intelligence

Graph Self-Supervised Learning (SSL) has emerged as a pivotal area of research in recent years. By engaging in pretext tasks to learn the intricate topological structures and properties of graphs using unlabeled data, these graph SSL models achieve enhanced performance, improved generalization, and heightened robustness. Despite the remarkable achievements of these graph SSL methods, their current implementation poses significant challenges for beginners and practitioners due to the complex nature of graph structures, inconsistent evaluation metrics, and concerns regarding reproducibility hinder further progress in this field. Recognizing the growing interest within the research community, there is an urgent need for a comprehensive, beginner-friendly, and accessible toolkit consisting of the most representative graph SSL algorithms. To address these challenges, we present a Graph SSL toolkit named PyG-SSL, which is built upon PyTorch and is compatible with various deep learning and scientific computing backends. Within the toolkit, we offer a unified framework encompassing dataset loading, hyper-parameter configuration, model training, and comprehensive performance evaluation for diverse downstream tasks. Moreover, we provide beginner-friendly tutorials and the best hyper-parameters of each graph SSL algorithm on different graph datasets, facilitating the reproduction of results.


Neural-Symbolic Reasoning over Knowledge Graphs: A Survey from a Query Perspective

arXiv.org Artificial Intelligence

Knowledge graph reasoning is pivotal in various domains such as data mining, artificial intelligence, the Web, and social sciences. These knowledge graphs function as comprehensive repositories of human knowledge, facilitating the inference of new information. Traditional symbolic reasoning, despite its strengths, struggles with the challenges posed by incomplete and noisy data within these graphs. In contrast, the rise of Neural Symbolic AI marks a significant advancement, merging the robustness of deep learning with the precision of symbolic reasoning. This integration aims to develop AI systems that are not only highly interpretable and explainable but also versatile, effectively bridging the gap between symbolic and neural methodologies. Additionally, the advent of large language models (LLMs) has opened new frontiers in knowledge graph reasoning, enabling the extraction and synthesis of knowledge in unprecedented ways. This survey offers a thorough review of knowledge graph reasoning, focusing on various query types and the classification of neural symbolic reasoning. Furthermore, it explores the innovative integration of knowledge graph reasoning with large language models, highlighting the potential for groundbreaking advancements. This comprehensive overview is designed to support researchers and practitioners across multiple fields, including data mining, AI, the Web, and social sciences, by providing a detailed understanding of the current landscape and future directions in knowledge graph reasoning.


Logic Query of Thoughts: Guiding Large Language Models to Answer Complex Logic Queries with Knowledge Graphs

arXiv.org Artificial Intelligence

Despite the superb performance in many tasks, large language models (LLMs) bear the risk of generating hallucination or even wrong answers when confronted with tasks that demand the accuracy of knowledge. The issue becomes even more noticeable when addressing logic queries that require multiple logic reasoning steps. On the other hand, knowledge graph (KG) based question answering methods are capable of accurately identifying the correct answers with the help of knowledge graph, yet its accuracy could quickly deteriorate when the knowledge graph itself is sparse and incomplete. It remains a critical challenge on how to integrate knowledge graph reasoning with LLMs in a mutually beneficial way so as to mitigate both the hallucination problem of LLMs as well as the incompleteness issue of knowledge graphs. In this paper, we propose 'Logic-Query-of-Thoughts' (LGOT) which is the first of its kind to combine LLMs with knowledge graph based logic query reasoning. LGOT seamlessly combines knowledge graph reasoning and LLMs, effectively breaking down complex logic queries into easy to answer subquestions. Through the utilization of both knowledge graph reasoning and LLMs, it successfully derives answers for each subquestion. By aggregating these results and selecting the highest quality candidate answers for each step, LGOT achieves accurate results to complex questions. Our experimental findings demonstrate substantial performance enhancements, with up to 20% improvement over ChatGPT.


Can Contrastive Learning Refine Embeddings

arXiv.org Artificial Intelligence

Recent advancements in contrastive learning have revolutionized self-supervised representation learning and achieved state-of-the-art performance on benchmark tasks. While most existing methods focus on applying contrastive learning to input data modalities such as images, natural language sentences, or networks, they overlook the potential of utilizing outputs from previously trained encoders. In this paper, we introduce SIMSKIP, a novel contrastive learning framework that specifically refines input embeddings for downstream tasks. Unlike traditional unsupervised learning approaches, SIMSKIP takes advantage of the output embeddings of encoder models as its input. Through theoretical analysis, we provide evidence that applying SIMSKIP does not result in larger upper bounds on downstream task errors than those of the original embeddings, which serve as SIMSKIP's input. Experimental results on various open datasets demonstrate that the embeddings produced by SIMSKIP improve performance on downstream tasks.


Conversational Question Answering with Reformulations over Knowledge Graph

arXiv.org Artificial Intelligence

conversational question answering (convQA) over knowledge graphs (KGs) involves answering multi-turn natural language questions about information contained in a KG. State-of-the-art methods of ConvQA often struggle with inexplicit question-answer pairs. These inputs are easy for human beings to understand given a conversation history, but hard for a machine to interpret, which can degrade ConvQA performance. To address this problem, we propose a reinforcement learning (RL) based model, CornNet, which utilizes question reformulations generated by large language models (LLMs) to improve ConvQA performance. CornNet adopts a teacher-student architecture where a teacher model learns question representations using human writing reformulations, and a student model to mimic the teacher model's output via reformulations generated by LLMs. The learned question representation is then used by an RL model to locate the correct answer in a KG. Extensive experimental results show that CornNet outperforms state-of-the-art convQA models.


Neural Multi-network Diffusion towards Social Recommendation

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) have been widely applied on a variety of real-world applications, such as social recommendation. However, existing GNN-based models on social recommendation suffer from serious problems of generalization and oversmoothness, because of the underexplored negative sampling method and the direct implanting of the off-the-shelf GNN models. In this paper, we propose a succinct multi-network GNN-based neural model (NeMo) for social recommendation. Compared with the existing methods, the proposed model explores a generative negative sampling strategy, and leverages both the positive and negative user-item interactions for users' interest propagation. The experiments show that NeMo outperforms the state-of-the-art baselines on various real-world benchmark datasets (e.g., by up to 38.8% in terms of NDCG@15).


KompaRe: A Knowledge Graph Comparative Reasoning System

arXiv.org Artificial Intelligence

Reasoning is a fundamental capability for harnessing valuable insight, knowledge and patterns from knowledge graphs. Existing work has primarily been focusing on point-wise reasoning, including search, link predication, entity prediction, subgraph matching and so on. This paper introduces comparative reasoning over knowledge graphs, which aims to infer the commonality and inconsistency with respect to multiple pieces of clues. We envision that the comparative reasoning will complement and expand the existing point-wise reasoning over knowledge graphs. In detail, we develop KompaRe, the first of its kind prototype system that provides comparative reasoning capability over large knowledge graphs. We present both the system architecture and its core algorithms, including knowledge segment extraction, pairwise reasoning and collective reasoning. Empirical evaluations demonstrate the efficacy of the proposed KompaRe.