Goto

Collaborating Authors

 Liu, Kuan


Escaping the Curse of Dimensionality in Similarity Learning: Efficient Frank-Wolfe Algorithm and Generalization Bounds

arXiv.org Machine Learning

High-dimensional and sparse data are commonly encountered in many applications of machine learning, such as computer vision, bioinformatics, text mining and behavioral targeting. To classify, cluster or rank data points, it is important to be able to compute semantically meaningful similarities between them. However, defining an appropriate similarity measure for a given task is often difficult as only a small and unknown subset of all features are actually relevant. For instance, in drug discovery studies, chemical compounds are typically represented by a large number of sparse features describing their 2D and 3D properties, and only a few of them play in role in determining whether the compound will bind to a particular target receptor (Leach and Gillet, 2007). In text classification and clustering, a document is often represented as a sparse bag of words, and only a small subset of the dictionary is generally useful to discriminate between documents about different topics. Another example is targeted advertising, where ads are selected based on fine-grained user history (Chen et al., 2009). Similarity and metric learning (Bellet et al., 2015) offers principled approaches to construct a taskspecific similarity measure by learning it from weakly supervised data, and has been used in many application domains. The main theme in these methods is to learn the parameters of a similarity (or distance) function such that it agrees with task-specific similarity judgments (e.g., of the form "data point x should


Learn to Combine Modalities in Multimodal Deep Learning

arXiv.org Artificial Intelligence

Combining complementary information from multiple modalities is intuitively appealing for improving the performance of learning-based approaches. However, it is challenging to fully leverage different modalities due to practical challenges such as varying levels of noise and conflicts between modalities. Existing methods do not adopt a joint approach to capturing synergies between the modalities while simultaneously filtering noise and resolving conflicts on a per sample basis. In this work we propose a novel deep neural network based technique that multiplicatively combines information from different source modalities. Thus the model training process automatically focuses on information from more reliable modalities while reducing emphasis on the less reliable modalities. Furthermore, we propose an extension that multiplicatively combines not only the single-source modalities, but a set of mixtured source modalities to better capture cross-modal signal correlations. We demonstrate the effectiveness of our proposed technique by presenting empirical results on three multimodal classification tasks from different domains. The results show consistent accuracy improvements on all three tasks.


A Sequential Embedding Approach for Item Recommendation with Heterogeneous Attributes

arXiv.org Artificial Intelligence

Attributes, such as metadata and profile, carry useful information which in principle can help improve accuracy in recommender systems. However, existing approaches have difficulty in fully leveraging attribute information due to practical challenges such as heterogeneity and sparseness. These approaches also fail to combine recurrent neural networks which have recently shown effectiveness in item recommendations in applications such as video and music browsing. To overcome the challenges and to harvest the advantages of sequence models, we present a novel approach, Heterogeneous Attribute Recurrent Neural Networks (HA-RNN), which incorporates heterogeneous attributes and captures sequential dependencies in \textit{both} items and attributes. HA-RNN extends recurrent neural networks with 1) a hierarchical attribute combination input layer and 2) an output attribute embedding layer. We conduct extensive experiments on two large-scale datasets. The new approach show significant improvements over the state-of-the-art models. Our ablation experiments demonstrate the effectiveness of the two components to address heterogeneous attribute challenges including variable lengths and attribute sparseness. We further investigate why sequence modeling works well by conducting exploratory studies and show sequence models are more effective when data scale increases.


A Batch Learning Framework for Scalable Personalized Ranking

AAAI Conferences

In designing personalized ranking algorithms, it is desirable to encourage a high precision at the top of the ranked list. Existing methods either seek a smooth convex surrogate for a non-smooth ranking metric or directly modify updating procedures to encourage top accuracy. In this work we point out that these methods do not scale well in a large-scale setting, and this is partly due to the inaccurate pointwise or pairwise rank estimation. We propose a new framework for personalized ranking. It uses batch-based rank estimators and smooth rank-sensitive loss functions. This new batch learning framework leads to more stable and accurate rank approximations compared to previous work. Moreover, it enables explicit use of parallel computation to speed up training. We conduct empirical evaluations on three item recommendation tasks, and our method shows a consistent accuracy improvement over current state-of-the-art methods. Additionally, we observe time efficiency advantages when data scale increases.


WMRB: Learning to Rank in a Scalable Batch Training Approach

arXiv.org Machine Learning

We propose a new learning to rank algorithm, named Weighted Margin-Rank Batch loss (WMRB), to extend the popular Weighted Approximate-Rank Pairwise loss (WARP). WMRB uses a new rank estimator and an efficient batch training algorithm. The approach allows more accurate item rank approximation and explicit utilization of parallel computation to accelerate training. In three item recommendation tasks, WMRB consistently outperforms WARP and other baselines. Moreover, WMRB shows clear time efficiency advantages as data scale increases.


A Batch Learning Framework for Scalable Personalized Ranking

arXiv.org Machine Learning

In designing personalized ranking algorithms, it is desirable to encourage a high precision at the top of the ranked list. Existing methods either seek a smooth convex surrogate for a non-smooth ranking metric or directly modify updating procedures to encourage top accuracy. In this work we point out that these methods do not scale well to a large-scale setting, and this is partly due to the inaccurate pointwise or pairwise rank estimation. We propose a new framework for personalized ranking. It uses batch-based rank estimators and smooth rank-sensitive loss functions. This new batch learning framework leads to more stable and accurate rank approximations compared to previous work. Moreover, it enables explicit use of parallel computation to speed up training. We conduct empirical evaluation on three item recommendation tasks. Our method shows consistent accuracy improvements over state-of-the-art methods. Additionally, we observe time efficiency advantages when data scale increases.


Kernel Approximation Methods for Speech Recognition

arXiv.org Machine Learning

We study large-scale kernel methods for acoustic modeling in speech recognition and compare their performance to deep neural networks (DNNs). We perform experiments on four speech recognition datasets, including the TIMIT and Broadcast News benchmark tasks, and compare these two types of models on frame-level performance metrics (accuracy, cross-entropy), as well as on recognition metrics (word/character error rate). In order to scale kernel methods to these large datasets, we use the random Fourier feature method of Rahimi and Recht (2007). We propose two novel techniques for improving the performance of kernel acoustic models. First, in order to reduce the number of random features required by kernel models, we propose a simple but effective method for feature selection. The method is able to explore a large number of non-linear features while maintaining a compact model more efficiently than existing approaches. Second, we present a number of frame-level metrics which correlate very strongly with recognition performance when computed on the heldout set; we take advantage of these correlations by monitoring these metrics during training in order to decide when to stop learning. This technique can noticeably improve the recognition performance of both DNN and kernel models, while narrowing the gap between them. Additionally, we show that the linear bottleneck method of Sainath et al. (2013) improves the performance of our kernel models significantly, in addition to speeding up training and making the models more compact. Together, these three methods dramatically improve the performance of kernel acoustic models, making their performance comparable to DNNs on the tasks we explored.


Temporal Learning and Sequence Modeling for a Job Recommender System

arXiv.org Machine Learning

We present our solution to the job recommendation task for RecSys Challenge 2016. The main contribution of our work is to combine temporal learning with sequence modeling to capture complex user-item activity patterns to improve job recommendations. First, we propose a time-based ranking model applied to historical observations and a hybrid matrix factorization over time re-weighted interactions. Second, we exploit sequence properties in user-items activities and develop a RNN-based recommendation model. Our solution achieved 5$^{th}$ place in the challenge among more than 100 participants. Notably, the strong performance of our RNN approach shows a promising new direction in employing sequence modeling for recommendation systems.


A Comparison between Deep Neural Nets and Kernel Acoustic Models for Speech Recognition

arXiv.org Machine Learning

We study large-scale kernel methods for acoustic modeling and compare to DNNs on performance metrics related to both acoustic modeling and recognition. Measuring perplexity and frame-level classification accuracy, kernel-based acoustic models are as effective as their DNN counterparts. However, on token-error-rates DNN models can be significantly better. We have discovered that this might be attributed to DNN's unique strength in reducing both the perplexity and the entropy of the predicted posterior probabilities. Motivated by our findings, we propose a new technique, entropy regularized perplexity, for model selection. This technique can noticeably improve the recognition performance of both types of models, and reduces the gap between them. While effective on Broadcast News, this technique could be also applicable to other tasks.


Similarity Learning for High-Dimensional Sparse Data

arXiv.org Machine Learning

A good measure of similarity between data points is crucial to many tasks in machine learning. Similarity and metric learning methods learn such measures automatically from data, but they do not scale well respect to the dimensionality of the data. In this paper, we propose a method that can learn efficiently similarity measure from high-dimensional sparse data. The core idea is to parameterize the similarity measure as a convex combination of rank-one matrices with specific sparsity structures. The parameters are then optimized with an approximate Frank-Wolfe procedure to maximally satisfy relative similarity constraints on the training data. Our algorithm greedily incorporates one pair of features at a time into the similarity measure, providing an efficient way to control the number of active features and thus reduce overfitting. It enjoys very appealing convergence guarantees and its time and memory complexity depends on the sparsity of the data instead of the dimension of the feature space. Our experiments on real-world high-dimensional datasets demonstrate its potential for classification, dimensionality reduction and data exploration.