Liu, Junming
Aligning Vision to Language: Text-Free Multimodal Knowledge Graph Construction for Enhanced LLMs Reasoning
Liu, Junming, Meng, Siyuan, Gao, Yanting, Mao, Song, Cai, Pinlong, Yan, Guohang, Chen, Yirong, Bian, Zilin, Shi, Botian, Wang, Ding
Multimodal reasoning in Large Language Models (LLMs) struggles with incomplete knowledge and hallucination artifacts, challenges that textual Knowledge Graphs (KGs) only partially mitigate due to their modality isolation. While Multimodal Knowledge Graphs (MMKGs) promise enhanced cross-modal understanding, their practical construction is impeded by semantic narrowness of manual text annotations and inherent noise in visual-semantic entity linkages. In this paper, we propose Vision-align-to-Language integrated Knowledge Graph (VaLiK), a novel approach for constructing MMKGs that enhances LLMs reasoning through cross-modal information supplementation. Specifically, we cascade pre-trained Vision-Language Models (VLMs) to align image features with text, transforming them into descriptions that encapsulate image-specific information. Furthermore, we developed a cross-modal similarity verification mechanism to quantify semantic consistency, effectively filtering out noise introduced during feature alignment. Even without manually annotated image captions, the refined descriptions alone suffice to construct the MMKG. Compared to conventional MMKGs construction paradigms, our approach achieves substantial storage efficiency gains while maintaining direct entity-to-image linkage capability. Experimental results on multimodal reasoning tasks demonstrate that LLMs augmented with VaLiK outperform previous state-of-the-art models. Our code is published at https://github.com/Wings-Of-Disaster/VaLiK.
How ChatGPT is Solving Vulnerability Management Problem
Liu, Peiyu, Liu, Junming, Fu, Lirong, Lu, Kangjie, Xia, Yifan, Zhang, Xuhong, Chen, Wenzhi, Weng, Haiqin, Ji, Shouling, Wang, Wenhai
Recently, ChatGPT has attracted great attention from the code analysis domain. Prior works show that ChatGPT has the capabilities of processing foundational code analysis tasks, such as abstract syntax tree generation, which indicates the potential of using ChatGPT to comprehend code syntax and static behaviors. However, it is unclear whether ChatGPT can complete more complicated real-world vulnerability management tasks, such as the prediction of security relevance and patch correctness, which require an all-encompassing understanding of various aspects, including code syntax, program semantics, and related manual comments. In this paper, we explore ChatGPT's capabilities on 6 tasks involving the complete vulnerability management process with a large-scale dataset containing 78,445 samples. For each task, we compare ChatGPT against SOTA approaches, investigate the impact of different prompts, and explore the difficulties. The results suggest promising potential in leveraging ChatGPT to assist vulnerability management. One notable example is ChatGPT's proficiency in tasks like generating titles for software bug reports. Furthermore, our findings reveal the difficulties encountered by ChatGPT and shed light on promising future directions. For instance, directly providing random demonstration examples in the prompt cannot consistently guarantee good performance in vulnerability management. By contrast, leveraging ChatGPT in a self-heuristic way -- extracting expertise from demonstration examples itself and integrating the extracted expertise in the prompt is a promising research direction. Besides, ChatGPT may misunderstand and misuse the information in the prompt. Consequently, effectively guiding ChatGPT to focus on helpful information rather than the irrelevant content is still an open problem.
Job2Vec: Job Title Benchmarking with Collective Multi-View Representation Learning
Zhang, Denghui, Liu, Junming, Zhu, Hengshu, Liu, Yanchi, Wang, Lichen, Wang, Pengyang, Xiong, Hui
Job Title Benchmarking (JTB) aims at matching job titles with similar expertise levels across various companies. JTB could provide precise guidance and considerable convenience for both talent recruitment and job seekers for position and salary calibration/prediction. Traditional JTB approaches mainly rely on manual market surveys, which is expensive and labor-intensive. Recently, the rapid development of Online Professional Graph has accumulated a large number of talent career records, which provides a promising trend for data-driven solutions. However, it is still a challenging task since (1) the job title and job transition (job-hopping) data is messy which contains a lot of subjective and non-standard naming conventions for the same position (e.g., Programmer, Software Development Engineer, SDE, Implementation Engineer), (2) there is a large amount of missing title/transition information, and (3) one talent only seeks limited numbers of jobs which brings the incompleteness and randomness modeling job transition patterns. To overcome these challenges, we aggregate all the records to construct a large-scale Job Title Benchmarking Graph (Job-Graph), where nodes denote job titles affiliated with specific companies and links denote the correlations between jobs. We reformulate the JTB as the task of link prediction over the Job-Graph that matched job titles should have links. Along this line, we propose a collective multi-view representation learning method (Job2Vec) by examining the Job-Graph jointly in (1) graph topology view, (2)semantic view, (3) job transition balance view, and (4) job transition duration view. We fuse the multi-view representations in the encode-decode paradigm to obtain a unified optimal representation for the task of link prediction. Finally, we conduct extensive experiments to validate the effectiveness of our proposed method.
A Strategy-Proof Online Auction with Time Discounting Values
Wu, Fan (Shanghai Jiao Tong University) | Liu, Junming (Shanghai Jiao Tong University) | Zheng, Zhenzhe (Shanghai Jiao Tong University) | Chen, Guihai (Shanghai Jiao Tong University)
Online mechanism design has been widely applied to various practical applications. However, designing a strategy-proof online mechanism is much more challenging than that in a static scenario due to short of knowledge of future information. In this paper, we investigate online auctions with time discounting values, in contrast to the flat values studied in most of existing work. We present a strategy-proof 2-competitive online auction mechanism despite of time discounting values. We also implement our design and compare it with off-line optimal solution. Our numerical results show that our design achieves good performance in terms of social welfare, revenue, average winning delay, and average valuation loss.