Liu, Ju
Extending Whisper with prompt tuning to target-speaker ASR
Ma, Hao, Peng, Zhiyuan, Shao, Mingjie, Li, Jing, Liu, Ju
Target-speaker automatic speech recognition (ASR) aims to transcribe the desired speech of a target speaker from multi-talker overlapped utterances. Most of the existing target-speaker ASR (TS-ASR) methods involve either training from scratch or fully fine-tuning a pre-trained model, leading to significant training costs and becoming inapplicable to large foundation models. This work leverages prompt tuning, a parameter-efficient fine-tuning approach, to extend Whisper, a large-scale single-talker ASR model, to TS-ASR. Variants of prompt tuning approaches along with their configurations are explored and optimized for TS-ASR.Experimental results show that prompt tuning can achieve performance comparable to state-of-the-art full training approaches while only requiring about 1\% of task-specific model parameters. Notably, the original Whisper's features, such as inverse text normalization and timestamp tagging, are retained in target-speaker ASR, keeping the generated transcriptions natural and informative.
Nonlinear Kernel Support Vector Machine with 0-1 Soft Margin Loss
Liu, Ju, Huang, Ling-Wei, Shao, Yuan-Hai, Chen, Wei-Jie, Li, Chun-Na
Recent advance on linear support vector machine with the 0-1 soft margin loss ($L_{0/1}$-SVM) shows that the 0-1 loss problem can be solved directly. However, its theoretical and algorithmic requirements restrict us extending the linear solving framework to its nonlinear kernel form directly, the absence of explicit expression of Lagrangian dual function of $L_{0/1}$-SVM is one big deficiency among of them. In this paper, by applying the nonparametric representation theorem, we propose a nonlinear model for support vector machine with 0-1 soft margin loss, called $L_{0/1}$-KSVM, which cunningly involves the kernel technique into it and more importantly, follows the success on systematically solving its linear task. Its optimal condition is explored theoretically and a working set selection alternating direction method of multipliers (ADMM) algorithm is introduced to acquire its numerical solution. Moreover, we firstly present a closed-form definition to the support vector (SV) of $L_{0/1}$-KSVM. Theoretically, we prove that all SVs of $L_{0/1}$-KSVM are only located on the parallel decision surfaces. The experiment part also shows that $L_{0/1}$-KSVM has much fewer SVs, simultaneously with a decent predicting accuracy, when comparing to its linear peer $L_{0/1}$-SVM and the other six nonlinear benchmark SVM classifiers.
Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge
Bakas, Spyridon, Reyes, Mauricio, Jakab, Andras, Bauer, Stefan, Rempfler, Markus, Crimi, Alessandro, Shinohara, Russell Takeshi, Berger, Christoph, Ha, Sung Min, Rozycki, Martin, Prastawa, Marcel, Alberts, Esther, Lipkova, Jana, Freymann, John, Kirby, Justin, Bilello, Michel, Fathallah-Shaykh, Hassan, Wiest, Roland, Kirschke, Jan, Wiestler, Benedikt, Colen, Rivka, Kotrotsou, Aikaterini, Lamontagne, Pamela, Marcus, Daniel, Milchenko, Mikhail, Nazeri, Arash, Weber, Marc-Andre, Mahajan, Abhishek, Baid, Ujjwal, Kwon, Dongjin, Agarwal, Manu, Alam, Mahbubul, Albiol, Alberto, Albiol, Antonio, Alex, Varghese, Tran, Tuan Anh, Arbel, Tal, Avery, Aaron, B., Pranjal, Banerjee, Subhashis, Batchelder, Thomas, Batmanghelich, Kayhan, Battistella, Enzo, Bendszus, Martin, Benson, Eze, Bernal, Jose, Biros, George, Cabezas, Mariano, Chandra, Siddhartha, Chang, Yi-Ju, Chazalon, Joseph, Chen, Shengcong, Chen, Wei, Chen, Jefferson, Cheng, Kun, Christoph, Meinel, Chylla, Roger, Clérigues, Albert, Costa, Anthony, Cui, Xiaomeng, Dai, Zhenzhen, Dai, Lutao, Deutsch, Eric, Ding, Changxing, Dong, Chao, Dudzik, Wojciech, Estienne, Théo, Shin, Hyung Eun, Everson, Richard, Fabrizio, Jonathan, Fang, Longwei, Feng, Xue, Fidon, Lucas, Fridman, Naomi, Fu, Huan, Fuentes, David, Gering, David G, Gao, Yaozong, Gates, Evan, Gholami, Amir, Gong, Mingming, González-Villá, Sandra, Pauloski, J. Gregory, Guan, Yuanfang, Guo, Sheng, Gupta, Sudeep, Thakur, Meenakshi H, Maier-Hein, Klaus H., Han, Woo-Sup, He, Huiguang, Hernández-Sabaté, Aura, Herrmann, Evelyn, Himthani, Naveen, Hsu, Winston, Hsu, Cheyu, Hu, Xiaojun, Hu, Xiaobin, Hu, Yan, Hu, Yifan, Hua, Rui, Huang, Teng-Yi, Huang, Weilin, Huo, Quan, HV, Vivek, Isensee, Fabian, Islam, Mobarakol, Albiol, Francisco J., Wang, Chiatse J., Jambawalikar, Sachin, Jose, V Jeya Maria, Jian, Weijian, Jin, Peter, Jungo, Alain, Nuechterlein, Nicholas K, Kao, Po-Yu, Kermi, Adel, Keutzer, Kurt, Khened, Mahendra, Kickingereder, Philipp, King, Nik, Knapp, Haley, Knecht, Urspeter, Kohli, Lisa, Kong, Deren, Kong, Xiangmao, Koppers, Simon, Kori, Avinash, Krishnamurthi, Ganapathy, Kumar, Piyush, Kushibar, Kaisar, Lachinov, Dmitrii, Lee, Joon, Lee, Chengen, Lee, Yuehchou, Lefkovits, Szidonia, Lefkovits, Laszlo, Li, Tengfei, Li, Hongwei, Li, Wenqi, Li, Hongyang, Li, Xiaochuan, Lin, Zheng-Shen, Lin, Fengming, Liu, Chang, Liu, Boqiang, Liu, Xiang, Liu, Mingyuan, Liu, Ju, Lladó, Xavier, Luo, Lin, Iftekharuddin, Khan M., Tsai, Yuhsiang M., Ma, Jun, Ma, Kai, Mackie, Thomas, Mahmoudi, Issam, Marcinkiewicz, Michal, McKinley, Richard, Mehta, Sachin, Mehta, Raghav, Meier, Raphael, Merhof, Dorit, Meyer, Craig, Mitra, Sushmita, Moiyadi, Aliasgar, Mrukwa, Grzegorz, Monteiro, Miguel A. B., Myronenko, Andriy, Carver, Eric N, Nalepa, Jakub, Ngo, Thuyen, Niu, Chen, Oermann, Eric, Oliveira, Arlindo, Oliver, Arnau, Ourselin, Sebastien, French, Andrew P., Pound, Michael P., Pridmore, Tony P., Serrano-Rubio, Juan Pablo, Paragios, Nikos, Paschke, Brad, Pei, Linmim, Peng, Suting, Pham, Bao, Piella, Gemma, Pillai, G. N., Piraud, Marie, Popli, Anmol, Prčkovska, Vesna, Puch, Santi, Puybareau, Élodie, Qiao, Xu, Suter, Yannick R, Scott, Matthew R., Rane, Swapnil, Rebsamen, Michael, Ren, Hongliang, Ren, Xuhua, Rezaei, Mina, Lorenzo, Pablo Ribalta, Rippel, Oliver, Robert, Charlotte, Choudhury, Ahana Roy, Jackson, Aaron S., Manjunath, B. S., Salem, Mostafa, Salvi, Joaquim, Sánchez, Irina, Schellingerhout, Dawid, Shboul, Zeina, Shen, Haipeng, Shen, Dinggang, Shenoy, Varun, Shi, Feng, Shu, Hai, Snyder, James, Han, Il Song, Soni, Mehul, Stawiaski, Jean, Subramanian, Shashank, Sun, Li, Sun, Roger, Sun, Jiawei, Sun, Kay, Sun, Yu, Sun, Guoxia, Sun, Shuang, Park, Moo Sung, Szilagyi, Laszlo, Talbar, Sanjay, Tao, Dacheng, Tao, Dacheng, Khadir, Mohamed Tarek, Thakur, Siddhesh, Tochon, Guillaume, Tran, Tuan, Tseng, Kuan-Lun, Turlapov, Vadim, Tustison, Nicholas, Shankar, B. Uma, Vakalopoulou, Maria, Valverde, Sergi, Vanguri, Rami, Vasiliev, Evgeny, Vercauteren, Tom, Vidyaratne, Lasitha, Vivekanandan, Ajeet, Wang, Guotai, Wang, Qian, Wang, Weichung, Wen, Ning, Wen, Xin, Weninger, Leon, Wick, Wolfgang, Wu, Shaocheng, Wu, Qiang, Xia, Yong, Xu, Yanwu, Xu, Xiaowen, Xu, Peiyuan, Yang, Tsai-Ling, Yang, Xiaoping, Yang, Hao-Yu, Yang, Junlin, Yang, Haojin, Yao, Hongdou, Young-Moxon, Brett, Yue, Xiangyu, Zhang, Songtao, Zhang, Angela, Zhang, Kun, Zhang, Xuejie, Zhang, Lichi, Zhang, Xiaoyue, Zhao, Sicheng, Zhao, Yu, Zheng, Yefeng, Zhong, Liming, Zhou, Chenhong, Zhou, Xiaobing, Zhu, Hongtu, Zong, Weiwei, Kalpathy-Cramer, Jayashree, Farahani, Keyvan, Davatzikos, Christos, van Leemput, Koen, Menze, Bjoern
Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multi-parametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumor is a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e. 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that undergone gross total resection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset.