Goto

Collaborating Authors

 Liu, Jiaxiang


Capability Localization: Capabilities Can be Localized rather than Individual Knowledge

arXiv.org Artificial Intelligence

Published as a conference paper at ICLR 2025C APABILITYL OCALIZATION: C APABILITIES C AN BE L OCALIZED RATHER THAN I NDIVIDUALK NOWLEDGE Xiusheng Huang 1,2,3, Jiaxiang Liu 1,2, Y equan Wang 3, Jun Zhao 1,2 and Kang Liu 1,2 1 The Key Laboratory of Cognition and Decision Intelligence for Complex Systems, Institute of Automation, Chinese Academy of Sciences 2 School of Artificial Intelligence, University of Chinese Academy of Sciences 3 Beijing Academy of Artificial Intelligence, Beijing, China huangxiusheng2020@ia.ac.cn, liujiaxiang21@mails.ucas.ac.cn, tshwangyequan@gmail.com, { jzhao,kliu }@nlpr.ia.ac.cn We found through fidelity and reliability evaluation experiments that individual knowledge cannot be localized. Afterwards, we constructed a dataset for decou-pling experiments and discovered the potential for localizing data commonalities. More and more research is focusing on the security (Bonaldi et al., 2024; Sun et al., 2024), ethics (Y an et al., 2024; Specifically, KN (Dai et al., 2021) believes that individual knowledge ROME (Meng et al., 2022a) believes that individual knowledge is stored on the Previous knowledge localization methods have proposed corresponding validation methods, reliability experiments will evaluate the reliability of these methods. In addition, the entire parameters chain occupies 2.6% of the overall model To further reveal the form of knowledge storage, we designed 1000 comparative samples and conducted decoupling experiments.


R-LLaVA: Improving Med-VQA Understanding through Visual Region of Interest

arXiv.org Artificial Intelligence

Artificial intelligence has made significant strides in medical visual question answering (Med-VQA), yet prevalent studies often interpret images holistically, overlooking the visual regions of interest that may contain crucial information, potentially aligning with a doctor's prior knowledge that can be incorporated with minimal annotations (e.g., bounding boxes). To address this gap, this paper introduces R-LLaVA, designed to enhance biomedical VQA understanding by integrating simple medical annotations as prior knowledge directly into the image space through CLIP. These annotated visual regions of interest are then fed into the LLaVA model during training, aiming to enrich the model's understanding of biomedical queries. Experimental evaluation on four standard Med-VQA datasets demonstrates R-LLaVA's superiority over existing state-of-the-art (SoTA) methods. Additionally, to verify the model's capability in visual comprehension, a novel multiple-choice medical visual understanding dataset is introduced, confirming the positive impact of focusing on visual regions of interest in advancing biomedical VQA understanding.


Reasons and Solutions for the Decline in Model Performance after Editing

arXiv.org Artificial Intelligence

Knowledge editing technology has received widespread attention for low-cost updates of incorrect or outdated knowledge in large-scale language models. However, recent research has found that edited models often exhibit varying degrees of performance degradation. The reasons behind this phenomenon and potential solutions have not yet been provided. In order to investigate the reasons for the performance decline of the edited model and optimize the editing method, this work explores the underlying reasons from both data and model perspectives. Specifically, 1) from a data perspective, to clarify the impact of data on the performance of editing models, this paper first constructs a Multi-Question Dataset (MQD) to evaluate the impact of different types of editing data on model performance. The performance of the editing model is mainly affected by the diversity of editing targets and sequence length, as determined through experiments. 2) From a model perspective, this article explores the factors that affect the performance of editing models. The results indicate a strong correlation between the L1-norm of the editing model layer and the editing accuracy, and clarify that this is an important factor leading to the bottleneck of editing performance. Finally, in order to improve the performance of the editing model, this paper further proposes a Dump for Sequence (D4S) method, which successfully overcomes the previous editing bottleneck by reducing the L1-norm of the editing layer, allowing users to perform multiple effective edits and minimizing model damage. Our code is available at https://github.com/nlpkeg/D4S.


SGW-based Multi-Task Learning in Vision Tasks

arXiv.org Artificial Intelligence

Multi-task-learning(MTL) is a multi-target optimization task. Neural networks try to realize each target using a shared interpretative space within MTL. However, as the scale of datasets expands and the complexity of tasks increases, knowledge sharing becomes increasingly challenging. In this paper, we first re-examine previous cross-attention MTL methods from the perspective of noise. We theoretically analyze this issue and identify it as a flaw in the cross-attention mechanism. To address this issue, we propose an information bottleneck knowledge extraction module (KEM). This module aims to reduce inter-task interference by constraining the flow of information, thereby reducing computational complexity. Furthermore, we have employed neural collapse to stabilize the knowledge-selection process. That is, before input to KEM, we projected the features into ETF space. This mapping makes our method more robust. We implemented and conducted comparative experiments with this method on multiple datasets. The results demonstrate that our approach significantly outperforms existing methods in multi-task learning.


Enhancing Large Language Models with Pseudo- and Multisource- Knowledge Graphs for Open-ended Question Answering

arXiv.org Artificial Intelligence

Mitigating the hallucinations of Large Language Models (LLMs) and enhancing them is a crucial task. Although some existing methods employ model self-enhancement techniques, they fall short of effectively addressing unknown factual hallucinations. Using Knowledge Graph (KG) enhancement approaches fails to address the generalization across different KG sources and the enhancement of open-ended answer questions simultaneously. To tackle these limitations, there is a framework that combines Pseudo-Graph Generation and Atomic Knowledge Verification proposed. The enhancement of LLM using KG in an open-ended question-answering setting is implemented by leveraging the Pseudo-Graph Generation. Atomic Knowledge Verification utilizes atomic-level knowledge querying and verification to achieve generalizability under different KG sources. Compared to the baseline, this approach yields a minimum improvement of 11.5 in the ROUGE-L score for open-ended questions. For precise questions, we observe a minimum accuracy improvement of 7.5. Moreover, there is also demonstration that this framework exhibits generalizability across different KG sources. In summary, our results pave the way for enhancing LLMs by incorporating Pseudo- and Multisource-KGs, particularly in the context of open-ended questions.


A ChatGPT Aided Explainable Framework for Zero-Shot Medical Image Diagnosis

arXiv.org Artificial Intelligence

Zero-shot medical image classification is a critical process in real-world scenarios where we have limited access to all possible diseases or large-scale annotated data. It involves computing similarity scores between a query medical image and possible disease categories to determine the diagnostic result. Recent advances in pretrained vision-language models (VLMs) such as CLIP have shown great performance for zero-shot natural image recognition and exhibit benefits in medical applications. However, an explainable zero-shot medical image recognition framework with promising performance is yet under development. In this paper, we propose a novel CLIP-based zero-shot medical image classification framework supplemented with ChatGPT for explainable diagnosis, mimicking the diagnostic process performed by human experts. The key idea is to query large language models (LLMs) with category names to automatically generate additional cues and knowledge, such as disease symptoms or descriptions other than a single category name, to help provide more accurate and explainable diagnosis in CLIP. We further design specific prompts to enhance the quality of generated texts by ChatGPT that describe visual medical features. Extensive results on one private dataset and four public datasets along with detailed analysis demonstrate the effectiveness and explainability of our training-free zero-shot diagnosis pipeline, corroborating the great potential of VLMs and LLMs for medical applications.


JoinBoost: Grow Trees Over Normalized Data Using Only SQL

arXiv.org Artificial Intelligence

Although dominant for tabular data, ML libraries that train tree models over normalized databases (e.g., LightGBM, XGBoost) require the data to be denormalized as a single table, materialized, and exported. This process is not scalable, slow, and poses security risks. In-DB ML aims to train models within DBMSes to avoid data movement and provide data governance. Rather than modify a DBMS to support In-DB ML, is it possible to offer competitive tree training performance to specialized ML libraries...with only SQL? We present JoinBoost, a Python library that rewrites tree training algorithms over normalized databases into pure SQL. It is portable to any DBMS, offers performance competitive with specialized ML libraries, and scales with the underlying DBMS capabilities. JoinBoost extends prior work from both algorithmic and systems perspectives. Algorithmically, we support factorized gradient boosting, by updating the $Y$ variable to the residual in the non-materialized join result. Although this view update problem is generally ambiguous, we identify addition-to-multiplication preserving, the key property of variance semi-ring to support rmse, the most widely used criterion. System-wise, we identify residual updates as a performance bottleneck. Such overhead can be natively minimized on columnar DBMSes by creating a new column of residual values and adding it as a projection. We validate this with two implementations on DuckDB, with no or minimal modifications to its internals for portability. Our experiment shows that JoinBoost is 3x (1.1x) faster for random forests (gradient boosting) compared to LightGBM, and over an order magnitude faster than state-of-the-art In-DB ML systems. Further, JoinBoost scales well beyond LightGBM in terms of the # features, DB size (TPC-DS SF=1000), and join graph complexity (galaxy schemas).


ERNIE-ViLG 2.0: Improving Text-to-Image Diffusion Model with Knowledge-Enhanced Mixture-of-Denoising-Experts

arXiv.org Artificial Intelligence

Recent progress in diffusion models has revolutionized the popular technology of text-to-image generation. While existing approaches could produce photorealistic high-resolution images with text conditions, there are still several open problems to be solved, which limits the further improvement of image fidelity and text relevancy. In this paper, we propose ERNIE-ViLG 2.0, a large-scale Chinese text-to-image diffusion model, to progressively upgrade the quality of generated images by: (1) incorporating fine-grained textual and visual knowledge of key elements in the scene, and (2) utilizing different denoising experts at different denoising stages. With the proposed mechanisms, ERNIE-ViLG 2.0 not only achieves a new state-of-the-art on MS-COCO with zero-shot FID score of 6.75, but also significantly outperforms recent models in terms of image fidelity and image-text alignment, with side-by-side human evaluation on the bilingual prompt set ViLG-300.


ERNIE 3.0 Tiny: Frustratingly Simple Method to Improve Task-Agnostic Distillation Generalization

arXiv.org Artificial Intelligence

Task-agnostic knowledge distillation attempts to address the problem of deploying large pretrained language model in resource-constrained scenarios by compressing a large pretrained model called teacher into a smaller one called student such that the student can be directly finetuned on downstream tasks and retains comparable performance. However, we empirically find that there is a generalization gap between the student and the teacher in existing methods. In this work, we show that we can leverage multi-task learning in task-agnostic distillation to advance the generalization of the resulted student. In particular, we propose Multi-task Infused Task-agnostic Knowledge Distillation (MITKD). We first enhance the teacher by multi-task training it on multiple downstream tasks and then perform distillation to produce the student. Experimental results demonstrate that our method yields a student with much better generalization, significantly outperforms existing baselines, and establishes a new state-of-the-art result on in-domain, out-domain, and low-resource datasets in the setting of task-agnostic distillation. Moreover, our method even exceeds an 8x larger BERT$_{\text{Base}}$ on SQuAD and four GLUE tasks. In addition, by combining ERNIE 3.0, our method achieves state-of-the-art results on 10 Chinese datasets.