Goto

Collaborating Authors

 Liu, Jiateng


Synthia: Novel Concept Design with Affordance Composition

arXiv.org Artificial Intelligence

Text-to-image (T2I) models enable rapid concept design, making them widely used in AI-driven design. While recent studies focus on generating semantic and stylistic variations of given design concepts, functional coherence--the integration of multiple affordances into a single coherent concept--remains largely overlooked. In this paper, we introduce SYNTHIA, a framework for generating novel, functionally coherent designs based on desired affordances. Our approach leverages a hierarchical concept ontology that decomposes concepts into parts and affordances, serving as a crucial building block for functionally coherent design. We also develop a curriculum learning scheme based on our ontology that contrastively fine-tunes T2I models to progressively learn affordance composition while maintaining visual novelty. To elaborate, we (i) gradually increase affordance distance, guiding models from basic concept-affordance association to complex affordance compositions that integrate parts of distinct affordances into a single, coherent form, and (ii) enforce visual novelty by employing contrastive objectives to push learned representations away from existing concepts. Experimental results show that SYNTHIA outperforms state-of-the-art T2I models, demonstrating absolute gains of 25.1% and 14.7% for novelty and functional coherence in human evaluation, respectively.


The Law of Knowledge Overshadowing: Towards Understanding, Predicting, and Preventing LLM Hallucination

arXiv.org Artificial Intelligence

Hallucination is a persistent challenge in large language models (LLMs), where even with rigorous quality control, models often generate distorted facts. This paradox, in which error generation continues despite high-quality training data, calls for a deeper understanding of the underlying LLM mechanisms. To address it, we propose a novel concept: knowledge overshadowing, where model's dominant knowledge can obscure less prominent knowledge during text generation, causing the model to fabricate inaccurate details. Building on this idea, we introduce a novel framework to quantify factual hallucinations by modeling knowledge overshadowing. Central to our approach is the log-linear law, which predicts that the rate of factual hallucination increases linearly with the logarithmic scale of (1) Knowledge Popularity, (2) Knowledge Length, and (3) Model Size. The law provides a means to preemptively quantify hallucinations, offering foresight into their occurrence even before model training or inference. Built on overshadowing effect, we propose a new decoding strategy CoDa, to mitigate hallucinations, which notably enhance model factuality on Overshadow (27.9%), MemoTrap (13.1%) and NQ-Swap (18.3%). Our findings not only deepen understandings of the underlying mechanisms behind hallucinations but also provide actionable insights for developing more predictable and controllable language models.


PropaInsight: Toward Deeper Understanding of Propaganda in Terms of Techniques, Appeals, and Intent

arXiv.org Artificial Intelligence

Propaganda plays a critical role in shaping public opinion and fueling disinformation. While existing research primarily focuses on identifying propaganda techniques, it lacks the ability to capture the broader motives and the impacts of such content. To address these challenges, we introduce propainsight, a conceptual framework grounded in foundational social science research, which systematically dissects propaganda into techniques, arousal appeals, and underlying intent. propainsight offers a more granular understanding of how propaganda operates across different contexts. Additionally, we present propagaze, a novel dataset that combines human-annotated data with high-quality synthetic data generated through a meticulously designed pipeline. Our experiments show that off-the-shelf LLMs struggle with propaganda analysis, but training with propagaze significantly improves performance. Fine-tuned Llama-7B-Chat achieves 203.4% higher text span IoU in technique identification and 66.2% higher BertScore in appeal analysis compared to 1-shot GPT-4-Turbo. Moreover, propagaze complements limited human-annotated data in data-sparse and cross-domain scenarios, showing its potential for comprehensive and generalizable propaganda analysis.


Knowledge Overshadowing Causes Amalgamated Hallucination in Large Language Models

arXiv.org Artificial Intelligence

Hallucination is often regarded as a major impediment for using large language models (LLMs), especially for knowledge-intensive tasks. Even when the training corpus consists solely of true statements, language models still generate hallucinations in the form of amalgamations of multiple facts. We coin this phenomenon as ``knowledge overshadowing'': when we query knowledge from a language model with multiple conditions, some conditions overshadow others, leading to hallucinated outputs. This phenomenon partially stems from training data imbalance, which we verify on both pretrained models and fine-tuned models, over a wide range of LM model families and sizes.From a theoretical point of view, knowledge overshadowing can be interpreted as over-generalization of the dominant conditions (patterns). We show that the hallucination rate grows with both the imbalance ratio (between the popular and unpopular condition) and the length of dominant condition description, consistent with our derived generalization bound. Finally, we propose to utilize overshadowing conditions as a signal to catch hallucination before it is produced, along with a training-free self-contrastive decoding method to alleviate hallucination during inference. Our proposed approach showcases up to 82% F1 for hallucination anticipation and 11.2% to 39.4% hallucination control, with different models and datasets.


If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code Empowers Large Language Models to Serve as Intelligent Agents

arXiv.org Artificial Intelligence

The prominent large language models (LLMs) of today differ from past language models not only in size, but also in the fact that they are trained on a combination of natural language and formal language (code). As a medium between humans and computers, code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity. In this survey, we present an overview of the various benefits of integrating code into LLMs' training data. Specifically, beyond enhancing LLMs in code generation, we observe that these unique properties of code help (i) unlock the reasoning ability of LLMs, enabling their applications to a range of more complex natural language tasks; (ii) steer LLMs to produce structured and precise intermediate steps, which can then be connected to external execution ends through function calls; and (iii) take advantage of code compilation and execution environment, which also provides diverse feedback for model improvement. In addition, we trace how these profound capabilities of LLMs, brought by code, have led to their emergence as intelligent agents (IAs) in situations where the ability to understand instructions, decompose goals, plan and execute actions, and refine from feedback are crucial to their success on downstream tasks. Finally, we present several key challenges and future directions of empowering LLMs with code.


MINT: Evaluating LLMs in Multi-turn Interaction with Tools and Language Feedback

arXiv.org Artificial Intelligence

To solve complex tasks, large language models (LLMs) often require multiple rounds of interactions with the user, sometimes assisted by external tools. However, current evaluation protocols often emphasize benchmark performance with single-turn exchanges, neglecting the nuanced interactions among the user, LLMs, and external tools, while also underestimating the importance of natural language feedback from users. These oversights contribute to discrepancies between research benchmark evaluations and real-world use cases. We introduce MINT, a benchmark that evaluates LLMs' ability to solve tasks with multi-turn interactions by (1) using tools and (2) leveraging natural language feedback. To ensure reproducibility, we provide an evaluation framework where LLMs can access tools by executing Python code and receive users' natural language feedback simulated by GPT-4. We repurpose a diverse set of established evaluation datasets focusing on reasoning, coding, and decision-making and carefully curate them into a compact subset for efficient evaluation. Our analysis of 20 open- and closed-source LLMs offers intriguing findings. (a) LLMs generally benefit from tools and language feedback, with performance gains (absolute, same below) of 1-8% for each turn of tool use and 2-17% with natural language feedback. (b) Better single-turn performance does not guarantee better multi-turn performance. (c) Surprisingly, on the LLMs evaluated, supervised instruction-finetuning (SIFT) and reinforcement learning from human feedback (RLHF) generally hurt multi-turn capabilities. We expect MINT can help measure progress and incentivize research in improving LLMs' capabilities in multi-turn interactions, especially for open-source communities where multi-turn human evaluation can be less accessible compared to commercial LLMs with a larger user base.


SMA-STN: Segmented Movement-Attending Spatiotemporal Network forMicro-Expression Recognition

arXiv.org Artificial Intelligence

Correctly perceiving micro-expression is difficult since micro-expression is an involuntary, repressed, and subtle facial expression, and efficiently revealing the subtle movement changes and capturing the significant segments in a micro-expression sequence is the key to micro-expression recognition (MER). To handle the crucial issue, in this paper, we firstly propose a dynamic segmented sparse imaging module (DSSI) to compute dynamic images as local-global spatiotemporal descriptors under a unique sampling protocol, which reveals the subtle movement changes visually in an efficient way. Secondly, a segmented movement-attending spatiotemporal network (SMA-STN) is proposed to further unveil imperceptible small movement changes, which utilizes a spatiotemporal movement-attending module (STMA) to capture long-distance spatial relation for facial expression and weigh temporal segments. Besides, a deviation enhancement loss (DE-Loss) is embedded in the SMA-STN to enhance the robustness of SMA-STN to subtle movement changes in feature level. Extensive experiments on three widely used benchmarks, i.e., CASME II, SAMM, and SHIC, show that the proposed SMA-STN achieves better MER performance than other state-of-the-art methods, which proves that the proposed method is effective to handle the challenging MER problem.