Goto

Collaborating Authors

 Liu, Houde


DeepMF: Deep Motion Factorization for Closed-Loop Safety-Critical Driving Scenario Simulation

arXiv.org Artificial Intelligence

Safety-critical traffic scenarios are of great practical relevance to evaluating the robustness of autonomous driving (AD) systems. Given that these long-tail events are extremely rare in real-world traffic data, there is a growing body of work dedicated to the automatic traffic scenario generation. However, nearly all existing algorithms for generating safety-critical scenarios rely on snippets of previously recorded traffic events, transforming normal traffic flow into accident-prone situations directly. In other words, safety-critical traffic scenario generation is hindsight and not applicable to newly encountered and open-ended traffic events.In this paper, we propose the Deep Motion Factorization (DeepMF) framework, which extends static safety-critical driving scenario generation to closed-loop and interactive adversarial traffic simulation. DeepMF casts safety-critical traffic simulation as a Bayesian factorization that includes the assignment of hazardous traffic participants, the motion prediction of selected opponents, the reaction estimation of autonomous vehicle (AV) and the probability estimation of the accident occur. All the aforementioned terms are calculated using decoupled deep neural networks, with inputs limited to the current observation and historical states. Consequently, DeepMF can effectively and efficiently simulate safety-critical traffic scenarios at any triggered time and for any duration by maximizing the compounded posterior probability of traffic risk. Extensive experiments demonstrate that DeepMF excels in terms of risk management, flexibility, and diversity, showcasing outstanding performance in simulating a wide range of realistic, high-risk traffic scenarios.


Novelty-based Sample Reuse for Continuous Robotics Control

arXiv.org Artificial Intelligence

In reinforcement learning, agents collect state information and rewards through environmental interactions, essential for policy refinement. This process is notably time-consuming, especially in complex robotic simulations and real-world applications. Traditional algorithms usually re-engage with the environment after processing a single batch of samples, thereby failing to fully capitalize on historical data. However, frequently observed states, with reliable value estimates, require minimal updates; in contrast, rare observed states necessitate more intensive updates for achieving accurate value estimations. To address uneven sample utilization, we propose Novelty-guided Sample Reuse (NSR). NSR provides extra updates for infrequent, novel states and skips additional updates for frequent states, maximizing sample use before interacting with the environment again. Our experiments show that NSR improves the convergence rate and success rate of algorithms without significantly increasing time consumption. Our code is publicly available at https://github.com/ppksigs/NSR-DDPG-HER.


MBC: Multi-Brain Collaborative Control for Quadruped Robots

arXiv.org Artificial Intelligence

In the field of locomotion task of quadruped robots, Blind Policy and Perceptive Policy each have their own advantages and limitations. The Blind Policy relies on preset sensor information and algorithms, suitable for known and structured environments, but it lacks adaptability in complex or unknown environments. The Perceptive Policy uses visual sensors to obtain detailed environmental information, allowing it to adapt to complex terrains, but its effectiveness is limited under occluded conditions, especially when perception fails. Unlike the Blind Policy, the Perceptive Policy is not as robust under these conditions. To address these challenges, we propose a MBC:Multi-Brain collaborative system that incorporates the concepts of Multi-Agent Reinforcement Learning and introduces collaboration between the Blind Policy and the Perceptive Policy. By applying this multi-policy collaborative model to a quadruped robot, the robot can maintain stable locomotion even when the perceptual system is impaired or observational data is incomplete. Our simulations and real-world experiments demonstrate that this system significantly improves the robot's passability and robustness against perception failures in complex environments, validating the effectiveness of multi-policy collaboration in enhancing robotic motion performance.


Efficient Collision Detection Framework for Enhancing Collision-Free Robot Motion

arXiv.org Artificial Intelligence

Fast and efficient collision detection is essential for motion generation in robotics. In this paper, we propose an efficient collision detection framework based on the Signed Distance Field (SDF) of robots, seamlessly integrated with a self-collision detection module. Firstly, we decompose the robot's SDF using forward kinematics and leverage multiple extremely lightweight networks in parallel to efficiently approximate the SDF. Moreover, we introduce support vector machines to integrate the self-collision detection module into the framework, which we refer to as the SDF-SC framework. Using statistical features, our approach unifies the representation of collision distance for both SDF and self-collision detection. During this process, we maintain and utilize the differentiable properties of the framework to optimize collision-free robot trajectories. Finally, we develop a reactive motion controller based on our framework, enabling real-time avoidance of multiple dynamic obstacles. While maintaining high accuracy, our framework achieves inference speeds up to five times faster than previous methods. Experimental results on the Franka robotic arm demonstrate the effectiveness of our approach.


CushionCatch: Compliant Catching Mechanism for Mobile Manipulators via Combined Optimization and Learning

arXiv.org Artificial Intelligence

This paper presents a framework to achieve compliant catching with cushioning mechanism(CCCM) for mobile manipulators. First, we introduce a two-level motion optimization scheme, comprising a high-level capture planner and a low-level joint planner. The low-level joint planner consists of two distinct components: Pre-Catching (PRC) planner and Post-Catching (POC) planner. Next, we propose a network that leverages the strengths of LSTM for temporal dependencies and positional encoding for spatial context(P-LSTM). P-LSTM is designed to effectively learn compliant control strategies from human demonstrations. To account for structural differences between humans and robots, safety constraints are incorporated into POC planner to avoid potential collisions. We validate the CCCM framework through both simulated and real-world ball-catching scenarios, achieving a success rate of 98.70% in simulation, 92.59% in real-world tests, and a 33.2% reduction in impact torques.


Like a Martial Arts Dodge: Safe Expeditious Whole-Body Control of Mobile Manipulators for Collision Avoidance

arXiv.org Artificial Intelligence

In the control task of mobile manipulators(MM), achieving efficient and agile obstacle avoidance in dynamic environments is challenging. In this letter, we present a safe expeditious whole-body(SEWB) control for MMs that ensures both external and internal collision-free. SEWB is constructed by a two-layer optimization structure. Firstly, control barrier functions(CBFs) are employed for a MM to establish initial safety constraints. Moreover, to resolve the pseudo-equilibrium problem of CBFs and improve avoidance agility, we propose a novel sub-optimization called adaptive cyclic inequality(ACI). ACI considers obstacle positions, velocities, and predefined directions to generate directional constraints. Then, we combine CBF and ACI to decompose safety constraints alongside an equality constraint for expectation control. Considering all these constraints, we formulate a quadratic programming(QP) as our primary optimization. In the QP cost function, we account for the motion accuracy differences between the base and manipulator, as well as obstacle influences, to achieve optimized motion. We validate the effectiveness of our SEWB control in avoiding collision and reaching target points through simulations and real-world experiments, particularly in challenging scenarios that involve fast-moving obstacles. SEWB has been proven to achieve whole-body collision-free and improve avoidance agility, similar to a "martial arts dodge".


Quadruped robot traversing 3D complex environments with limited perception

arXiv.org Artificial Intelligence

Traversing 3-D complex environments has always been a significant challenge for legged locomotion. Existing methods typically rely on external sensors such as vision and lidar to preemptively react to obstacles by acquiring environmental information. However, in scenarios like nighttime or dense forests, external sensors often fail to function properly, necessitating robots to rely on proprioceptive sensors to perceive diverse obstacles in the environment and respond promptly. This task is undeniably challenging. Our research finds that methods based on collision detection can enhance a robot's perception of environmental obstacles. In this work, we propose an end-to-end learning-based quadruped robot motion controller that relies solely on proprioceptive sensing. This controller can accurately detect, localize, and agilely respond to collisions in unknown and complex 3D environments, thereby improving the robot's traversability in complex environments. We demonstrate in both simulation and real-world experiments that our method enables quadruped robots to successfully traverse challenging obstacles in various complex environments.


RoboDuet: A Framework Affording Mobile-Manipulation and Cross-Embodiment

arXiv.org Artificial Intelligence

Combining the mobility of legged robots with the manipulation skills of arms has the potential to significantly expand the operational range and enhance the capabilities of robotic systems in performing various mobile manipulation tasks. Existing approaches are confined to imprecise six degrees of freedom (DoF) manipulation and possess a limited arm workspace. In this paper, we propose a novel framework, RoboDuet, which employs two collaborative policies to realize locomotion and manipulation simultaneously, achieving whole-body control through interactions between each other. Surprisingly, going beyond the large-range pose tracking, we find that the two-policy framework may enable cross-embodiment deployment such as using different quadrupedal robots or other arms. Our experiments demonstrate that the policies trained through RoboDuet can accomplish stable gaits, agile 6D end-effector pose tracking, and zero-shot exchange of legged robots, and can be deployed in the real world to perform various mobile manipulation tasks. Our project page with demo videos is at https://locomanip-duet.github.io .


Agile and versatile bipedal robot tracking control through reinforcement learning

arXiv.org Artificial Intelligence

The remarkable athletic intelligence displayed by humans in complex dynamic movements such as dancing and gymnastics suggests that the balance mechanism in biological beings is decoupled from specific movement patterns. This decoupling allows for the execution of both learned and unlearned movements under certain constraints while maintaining balance through minor whole-body coordination. To replicate this balance ability and body agility, this paper proposes a versatile controller for bipedal robots. This controller achieves ankle and body trajectory tracking across a wide range of gaits using a single small-scale neural network, which is based on a model-based IK solver and reinforcement learning. We consider a single step as the smallest control unit and design a universally applicable control input form suitable for any single-step variation. Highly flexible gait control can be achieved by combining these minimal control units with high-level policy through our extensible control interface. To enhance the trajectory-tracking capability of our controller, we utilize a three-stage training curriculum. After training, the robot can move freely between target footholds at varying distances and heights. The robot can also maintain static balance without repeated stepping to adjust posture. Finally, we evaluate the tracking accuracy of our controller on various bipedal tasks, and the effectiveness of our control framework is verified in the simulation environment.


Visual-tactile Fusion for Transparent Object Grasping in Complex Backgrounds

arXiv.org Artificial Intelligence

The accurate detection and grasping of transparent objects are challenging but of significance to robots. Here, a visual-tactile fusion framework for transparent object grasping under complex backgrounds and variant light conditions is proposed, including the grasping position detection, tactile calibration, and visual-tactile fusion based classification. First, a multi-scene synthetic grasping dataset generation method with a Gaussian distribution based data annotation is proposed. Besides, a novel grasping network named TGCNN is proposed for grasping position detection, showing good results in both synthetic and real scenes. In tactile calibration, inspired by human grasping, a fully convolutional network based tactile feature extraction method and a central location based adaptive grasping strategy are designed, improving the success rate by 36.7% compared to direct grasping. Furthermore, a visual-tactile fusion method is proposed for transparent objects classification, which improves the classification accuracy by 34%. The proposed framework synergizes the advantages of vision and touch, and greatly improves the grasping efficiency of transparent objects.