Liu, Hongtao
A Survey on LLM-powered Agents for Recommender Systems
Peng, Qiyao, Liu, Hongtao, Huang, Hua, Yang, Qing, Shao, Minglai
Recommender systems are essential components of many online platforms, yet traditional approaches still struggle with understanding complex user preferences and providing explainable recommendations. The emergence of Large Language Model (LLM)-powered agents offers a promising approach by enabling natural language interactions and interpretable reasoning, potentially transforming research in recommender systems. This survey provides a systematic review of the emerging applications of LLM-powered agents in recommender systems. We identify and analyze three key paradigms in current research: (1) Recommender-oriented approaches, which leverage intelligent agents to enhance the fundamental recommendation mechanisms; (2) Interaction-oriented approaches, which facilitate dynamic user engagement through natural dialogue and interpretable suggestions; and (3) Simulation-oriented approaches, which employ multi-agent frameworks to model complex user-item interactions and system dynamics. Beyond paradigm categorization, we analyze the architectural foundations of LLM-powered recommendation agents, examining their essential components: profile construction, memory management, strategic planning, and action execution. Our investigation extends to a comprehensive analysis of benchmark datasets and evaluation frameworks in this domain. This systematic examination not only illuminates the current state of LLM-powered agent recommender systems but also charts critical challenges and promising research directions in this transformative field.
Advancing Large Language Model Attribution through Self-Improving
Huang, Lei, Feng, Xiaocheng, Ma, Weitao, Zhao, Liang, Fan, Yuchun, Zhong, Weihong, Xu, Dongliang, Yang, Qing, Liu, Hongtao, Qin, Bing
Teaching large language models (LLMs) to generate text with citations to evidence sources can mitigate hallucinations and enhance verifiability in information-seeking systems. However, improving this capability requires high-quality attribution data, which is costly and labor-intensive. Inspired by recent advances in self-improvement that enhance LLMs without manual annotation, we present START, a Self-Taught AttRibuTion framework for iteratively improving the attribution capability of LLMs. First, to prevent models from stagnating due to initially insufficient supervision signals, START leverages the model to self-construct synthetic training data for warming up. To further self-improve the model's attribution ability, START iteratively utilizes fine-grained preference supervision signals constructed from its sampled responses to encourage robust, comprehensive, and attributable generation. Experiments on three open-domain question-answering datasets, covering long-form QA and multi-step reasoning, demonstrate significant performance gains of 25.13% on average without relying on human annotations and more advanced models. Further analysis reveals that START excels in aggregating information across multiple sources.
SRAP-Agent: Simulating and Optimizing Scarce Resource Allocation Policy with LLM-based Agent
Ji, Jiarui, Li, Yang, Liu, Hongtao, Du, Zhicheng, Wei, Zhewei, Shen, Weiran, Qi, Qi, Lin, Yankai
Public scarce resource allocation plays a crucial role in economics as it directly influences the efficiency and equity in society. Traditional studies including theoretical model-based, empirical study-based and simulation-based methods encounter limitations due to the idealized assumption of complete information and individual rationality, as well as constraints posed by limited available data. In this work, we propose an innovative framework, SRAP-Agent (Simulating and Optimizing Scarce Resource Allocation Policy with LLM-based Agent), which integrates Large Language Models (LLMs) into economic simulations, aiming to bridge the gap between theoretical models and real-world dynamics. Using public housing allocation scenarios as a case study, we conduct extensive policy simulation experiments to verify the feasibility and effectiveness of the SRAP-Agent and employ the Policy Optimization Algorithm with certain optimization objectives. The source code can be found in https://github.com/jijiarui-cather/SRAPAgent_Framework
GlobeSumm: A Challenging Benchmark Towards Unifying Multi-lingual, Cross-lingual and Multi-document News Summarization
Ye, Yangfan, Feng, Xiachong, Feng, Xiaocheng, Ma, Weitao, Qin, Libo, Xu, Dongliang, Yang, Qing, Liu, Hongtao, Qin, Bing
News summarization in today's global scene can be daunting with its flood of multilingual content and varied viewpoints from different sources. However, current studies often neglect such real-world scenarios as they tend to focus solely on either single-language or single-document tasks. To bridge this gap, we aim to unify Multi-lingual, Cross-lingual and Multi-document Summarization into a novel task, i.e., MCMS, which encapsulates the real-world requirements all-in-one. Nevertheless, the lack of a benchmark inhibits researchers from adequately studying this invaluable problem. To tackle this, we have meticulously constructed the GLOBESUMM dataset by first collecting a wealth of multilingual news reports and restructuring them into event-centric format. Additionally, we introduce the method of protocol-guided prompting for high-quality and cost-effective reference annotation. In MCMS, we also highlight the challenge of conflicts between news reports, in addition to the issues of redundancies and omissions, further enhancing the complexity of GLOBESUMM. Through extensive experimental analysis, we validate the quality of our dataset and elucidate the inherent challenges of the task. We firmly believe that GLOBESUMM, given its challenging nature, will greatly contribute to the multilingual communities and the evaluation of LLMs.
Extending Context Window of Large Language Models from a Distributional Perspective
Wu, Yingsheng, Gu, Yuxuan, Feng, Xiaocheng, Zhong, Weihong, Xu, Dongliang, Yang, Qing, Liu, Hongtao, Qin, Bing
Scaling the rotary position embedding (RoPE) has become a common method for extending the context window of RoPE-based large language models (LLMs). However, existing scaling methods often rely on empirical approaches and lack a profound understanding of the internal distribution within RoPE, resulting in suboptimal performance in extending the context window length. In this paper, we propose to optimize the context window extending task from the view of rotary angle distribution. Specifically, we first estimate the distribution of the rotary angles within the model and analyze the extent to which length extension perturbs this distribution. Then, we present a novel extension strategy that minimizes the disturbance between rotary angle distributions to maintain consistency with the pre-training phase, enhancing the model's capability to generalize to longer sequences. Experimental results compared to the strong baseline methods demonstrate that our approach reduces by up to 72% of the distributional disturbance when extending LLaMA2's context window to 8k, and reduces by up to 32% when extending to 16k. On the LongBench-E benchmark, our method achieves an average improvement of up to 4.33% over existing state-of-the-art methods. Furthermore, Our method maintains the model's performance on the Hugging Face Open LLM benchmark after context window extension, with only an average performance fluctuation ranging from -0.12 to +0.22.
Review-LLM: Harnessing Large Language Models for Personalized Review Generation
Peng, Qiyao, Liu, Hongtao, Xu, Hongyan, Yang, Qing, Shao, Minglai, Wang, Wenjun
Product review generation is an important task in recommender systems, which could provide explanation and persuasiveness for the recommendation. Recently, Large Language Models (LLMs, e.g., ChatGPT) have shown superior text modeling and generating ability, which could be applied in review generation. However, directly applying the LLMs for generating reviews might be troubled by the ``polite'' phenomenon of the LLMs and could not generate personalized reviews (e.g., negative reviews). In this paper, we propose Review-LLM that customizes LLMs for personalized review generation. Firstly, we construct the prompt input by aggregating user historical behaviors, which include corresponding item titles and reviews. This enables the LLMs to capture user interest features and review writing style. Secondly, we incorporate ratings as indicators of satisfaction into the prompt, which could further improve the model's understanding of user preferences and the sentiment tendency control of generated reviews. Finally, we feed the prompt text into LLMs, and use Supervised Fine-Tuning (SFT) to make the model generate personalized reviews for the given user and target item. Experimental results on the real-world dataset show that our fine-tuned model could achieve better review generation performance than existing close-source LLMs.
Bucket Pre-training is All You Need
Liu, Hongtao, Peng, Qiyao, Yang, Qing, Liu, Kai, Xu, Hongyan
Large language models (LLMs) have demonstrated exceptional performance across various natural language processing tasks. However, the conventional fixed-length data composition strategy for pretraining, which involves concatenating and splitting documents, can introduce noise and limit the model's ability to capture long-range dependencies. To address this, we first introduce three metrics for evaluating data composition quality: padding ratio, truncation ratio, and concatenation ratio. We further propose a multi-bucket data composition method that moves beyond the fixed-length paradigm, offering a more flexible and efficient approach to pretraining. Extensive experiments demonstrate that our proposed method could significantly improving both the efficiency and efficacy of LLMs pretraining. Our approach not only reduces noise and preserves context but also accelerates training, making it a promising solution for LLMs pretraining.
Meaningful Learning: Advancing Abstract Reasoning in Large Language Models via Generic Fact Guidance
Xiong, Kai, Ding, Xiao, Liu, Ting, Qin, Bing, Xu, Dongliang, Yang, Qing, Liu, Hongtao, Cao, Yixin
Large language models (LLMs) have developed impressive performance and strong explainability across various reasoning scenarios, marking a significant stride towards mimicking human-like intelligence. Despite this, when tasked with simple questions supported by a generic fact, LLMs often fail to provide consistent and precise answers, indicating a deficiency in abstract reasoning abilities. This has sparked a vigorous debate about whether LLMs are genuinely reasoning or merely memorizing. In light of this, we design a preliminary study to quantify and delve into the abstract reasoning abilities of existing LLMs. Our findings reveal a substantial discrepancy between their general reasoning and abstract reasoning performances. To relieve this problem, we tailor an abstract reasoning dataset (AbsR) together with a meaningful learning paradigm to teach LLMs how to leverage generic facts for reasoning purposes. The results show that our approach not only boosts the general reasoning performance of LLMs but also makes considerable strides towards their capacity for abstract reasoning, moving beyond simple memorization or imitation to a more nuanced understanding and application of generic facts.
PUNR: Pre-training with User Behavior Modeling for News Recommendation
Ma, Guangyuan, Liu, Hongtao, Wu, Xing, Qian, Wanhui, Lv, Zhepeng, Yang, Qing, Hu, Songlin
News recommendation aims to predict click behaviors based on user behaviors. How to effectively model the user representations is the key to recommending preferred news. Existing works are mostly focused on improvements in the supervised fine-tuning stage. However, there is still a lack of PLM-based unsupervised pre-training methods optimized for user representations. In this work, we propose an unsupervised pre-training paradigm with two tasks, i.e. user behavior masking and user behavior generation, both towards effective user behavior modeling. Firstly, we introduce the user behavior masking pre-training task to recover the masked user behaviors based on their contextual behaviors. In this way, the model could capture a much stronger and more comprehensive user news reading pattern. Besides, we incorporate a novel auxiliary user behavior generation pre-training task to enhance the user representation vector derived from the user encoder. We use the above pre-trained user modeling encoder to obtain news and user representations in downstream fine-tuning. Evaluations on the real-world news benchmark show significant performance improvements over existing baselines.
Deep Generative Modeling on Limited Data with Regularization by Nontransferable Pre-trained Models
Zhong, Yong, Liu, Hongtao, Liu, Xiaodong, Bao, Fan, Shen, Weiran, Li, Chongxuan
Deep generative models (DGMs) are data-eager because learning a complex model on limited data suffers from a large variance and easily overfits. Inspired by the classical perspective of the bias-variance tradeoff, we propose regularized deep generative model (Reg-DGM), which leverages a nontransferable pre-trained model to reduce the variance of generative modeling with limited data. Formally, Reg-DGM optimizes a weighted sum of a certain divergence and the expectation of an energy function, where the divergence is between the data and the model distributions, and the energy function is defined by the pre-trained model w.r.t. the model distribution. We analyze a simple yet representative Gaussian-fitting case to demonstrate how the weighting hyperparameter trades off the bias and the variance. Theoretically, we characterize the existence and the uniqueness of the global minimum of Reg-DGM in a non-parametric setting and prove its convergence with neural networks trained by gradient-based methods. Empirically, with various pretrained feature extractors and a data-dependent energy function, Reg-DGM consistently improves the generation performance of strong DGMs with limited data and achieves competitive results to the state-of-the-art methods. Such models are often data-eager (Li et al., 2021; Wang et al., 2018) due to the presence of complex function classes. Recent work (Karras et al., 2020a) found that the classical variants of generative adversarial networks (GANs) (Goodfellow et al., 2014; Karras et al., 2020b) produce poor samples with limited data, which is shared by other DGMs in principle. Thus, improving the sample efficiency is a common challenge for DGMs. The root cause of the problem is that learning a model in a complex class on limited data suffers from a large variance and easily overfits the training data (Mohri et al., 2018). Although not pointed out in the literature to our knowledge, prior work can be understood as reducing the variance of the estimate implicitly (Mohri et al., 2018). In Sec. 2, we formulate the objective function of Reg-DGM as the sum of a certain divergence and a regularization term weighted by a hyperparameter.