Liu, Guanhong
Toward Equitable Access: Leveraging Crowdsourced Reviews to Investigate Public Perceptions of Health Resource Accessibility
Xue, Zhaoqian, Liu, Guanhong, Wei, Kai, Zhang, Chong, Zeng, Qingcheng, Hu, Songhua, Hua, Wenyue, Fan, Lizhou, Zhang, Yongfeng, Li, Lingyao
Access to health resources is a critical determinant of public well-being and societal resilience, particularly during public health crises when demand for medical services and preventive care surges. However, disparities in accessibility persist across demographic and geographic groups, raising concerns about equity. Traditional survey methods often fall short due to limitations in coverage, cost, and timeliness. This study leverages crowdsourced data from Google Maps reviews, applying advanced natural language processing techniques, specifically ModernBERT, to extract insights on public perceptions of health resource accessibility in the United States during the COVID-19 pandemic. Additionally, we employ Partial Least Squares regression to examine the relationship between accessibility perceptions and key socioeconomic and demographic factors including political affiliation, racial composition, and educational attainment. Our findings reveal that public perceptions of health resource accessibility varied significantly across the U.S., with disparities peaking during the pandemic and slightly easing post-crisis. Political affiliation, racial demographics, and education levels emerged as key factors shaping these perceptions. These findings underscore the need for targeted interventions and policy measures to address inequities, fostering a more inclusive healthcare infrastructure that can better withstand future public health challenges.
Sympathy over Polarization: A Computational Discourse Analysis of Social Media Posts about the July 2024 Trump Assassination Attempt
Zeng, Qingcheng, Liu, Guanhong, Xue, Zhaoqian, Ford, Diego, Voigt, Rob, Hagen, Loni, Li, Lingyao
On July 13, 2024, at the Trump rally in Pennsylvania, someone attempted to assassinate Republican Presidential Candidate Donald Trump. This attempt sparked a large-scale discussion on social media. We collected posts from X (formerly known as Twitter) one week before and after the assassination attempt and aimed to model the short-term effects of such a ``shock'' on public opinions and discussion topics. Specifically, our study addresses three key questions: first, we investigate how public sentiment toward Donald Trump shifts over time and across regions (RQ1) and examine whether the assassination attempt itself significantly affects public attitudes, independent of the existing political alignments (RQ2). Finally, we explore the major themes in online conversations before and after the crisis, illustrating how discussion topics evolved in response to this politically charged event (RQ3). By integrating large language model-based sentiment analysis, difference-in-differences modeling, and topic modeling techniques, we find that following the attempt the public response was broadly sympathetic to Trump rather than polarizing, despite baseline ideological and regional disparities.