Liu, Erwu
Multi-Continental Healthcare Modelling Using Blockchain-Enabled Federated Learning
Sun, Rui, Wang, Zhipeng, Zhang, Hengrui, Jiang, Ming, Wen, Yizhe, Zhang, Jiqun, Sun, Jiahao, Zhang, Shuoying, Liu, Erwu, Li, Kezhi
One of the biggest challenges of building artificial intelligence (AI) model in healthcare area is the data sharing. Since healthcare data is private, sensitive, and heterogeneous, collecting sufficient data for modelling is exhausted, costly, and sometimes impossible. In this paper, we propose a framework for global healthcare modelling using datasets from multi-continents (Europe, North America and Asia) while without sharing the local datasets, and choose glucose management as a study model to verify its effectiveness. Technically, blockchain-enabled federated learning is implemented with adaption to make it meet with the privacy and safety requirements of healthcare data, meanwhile rewards honest participation and penalize malicious activities using its on-chain incentive mechanism. Experimental results show that the proposed framework is effective, efficient, and privacy preserved. Its prediction accuracy is much better than the models trained from limited personal data and is similar to, and even slightly better than, the results from a centralized dataset. This work paves the way for international collaborations on healthcare projects, where additional data is crucial for reducing bias and providing benefits to humanity.
Dual-Segment Clustering Strategy for Federated Learning in Heterogeneous Environments
Sun, Pengcheng, Liu, Erwu, Ni, Wei, Yu, Kanglei, Wang, Rui, Jamalipour, Abbas
Federated learning (FL) is a distributed machine learning paradigm with high efficiency and low communication load, only transmitting parameters or gradients of network. However, the non-independent and identically distributed (Non-IID) data characteristic has a negative impact on this paradigm. Furthermore, the heterogeneity of communication quality will significantly affect the accuracy of parameter transmission, causing a degradation in the performance of the FL system or even preventing its convergence. This letter proposes a dual-segment clustering (DSC) strategy, which first clusters the clients according to the heterogeneous communication conditions and then performs a second clustering by the sample size and label distribution, so as to solve the problem of data and communication heterogeneity. Experimental results show that the DSC strategy proposed in this letter can improve the convergence rate of FL, and has superiority on accuracy in a heterogeneous environment compared with the classical algorithm of cluster.
A SER-based Device Selection Mechanism in Multi-bits Quantization Federated Learning
Sun, Pengcheng, Liu, Erwu, Wang, Rui
The quality of wireless communication will directly affect the performance of federated learning (FL), so this paper analyze the influence of wireless communication on FL through symbol error rate (SER). In FL system, non-orthogonal multiple access (NOMA) can be used as the basic communication framework to reduce the communication congestion and interference caused by multiple users, which takes advantage of the superposition characteristics of wireless channels. The Minimum Mean Square Error (MMSE) based serial interference cancellation (SIC) technology is used to recover the gradient of each terminal node one by one at the receiving end. In this paper, the gradient parameters are quantized into multiple bits to retain more gradient information to the maximum extent and to improve the tolerance of transmission errors. On this basis, we designed the SER-based device selection mechanism (SER-DSM) to ensure that the learning performance is not affected by users with bad communication conditions, while accommodating as many users as possible to participate in the learning process, which is inclusive to a certain extent. The experiments show the influence of multi-bit quantization of gradient on FL and the necessity and superiority of the proposed SER-based device selection mechanism.
Blockchain-Based Federated Learning in Mobile Edge Networks with Application in Internet of Vehicles
Wang, Rui, Li, Heju, Liu, Erwu
The rapid increase of the data scale in Internet of Vehicles (IoV) system paradigm, hews out new possibilities in boosting the service quality for the emerging applications through data sharing. Nevertheless, privacy concerns are major bottlenecks for data providers to share private data in traditional IoV networks. To this end, federated learning (FL) as an emerging learning paradigm, where data providers only send local model updates trained on their local raw data rather than upload any raw data, has been recently proposed to build a privacy-preserving data sharing models. Unfortunately, by analyzing on the differences of uploaded local model updates from data providers, private information can still be divulged, and performance of the system cannot be guaranteed when partial federated nodes executes malicious behavior. Additionally, traditional cloud-based FL poses challenges to the communication overhead with the rapid increase of terminal equipment in IoV system. All these issues inspire us to propose an autonomous blockchain empowered privacy-preserving FL framework in this paper, where the mobile edge computing (MEC) technology was naturally integrated in IoV system.
Deep Reinforcement Learning Based Dynamic Route Planning for Minimizing Travel Time
Geng, Yuanzhe, Liu, Erwu, Wang, Rui, Liu, Yiming
Route planning is important in transportation. Existing works focus on finding the shortest path solution or using metrics such as safety and energy consumption to determine the planning. It is noted that most of these studies rely on prior knowledge of road network, which may be not available in certain situations. In this paper, we design a route planning algorithm based on deep reinforcement learning (DRL) for pedestrians. We use travel time consumption as the metric, and plan the route by predicting pedestrian flow in the road network. We put an agent, which is an intelligent robot, on a virtual map. Different from previous studies, our approach assumes that the agent does not need any prior information about road network, but simply relies on the interaction with the environment. We propose a dynamically adjustable route planning (DARP) algorithm, where the agent learns strategies through a dueling deep Q network to avoid congested roads. Simulation results show that the DARP algorithm saves 52% of the time under congestion condition when compared with traditional shortest path planning algorithms.