Liu, Emerson
Your Language Model May Think Too Rigidly: Achieving Reasoning Consistency with Symmetry-Enhanced Training
Yao, Yihang, Cen, Zhepeng, Li, Miao, Han, William, Zhang, Yuyou, Liu, Emerson, Liu, Zuxin, Gan, Chuang, Zhao, Ding
Large Language Models (LLMs) have demonstrated strong reasoning capabilities across various tasks. However, even minor variations in query phrasing, despite preserving the underlying semantic meaning, can significantly affect their performance. To address this, we focus on enhancing LLMs' awareness of symmetry in query variations and propose syMmetry-ENhanceD (MEND) Data Augmentation, a data-centric approach that improves the model's ability to extract useful information from context. Unlike existing methods that emphasize reasoning chain augmentation, our approach improves model robustness at the knowledge extraction stage through query augmentations, enabling more data-efficient training and stronger generalization to Out-of-Distribution (OOD) settings. Extensive experiments on both logical and arithmetic reasoning tasks show that MEND enhances reasoning performance across diverse query variations, providing new insight into improving LLM robustness through structured dataset curation.
ECG-Byte: A Tokenizer for End-to-End Generative Electrocardiogram Language Modeling
Han, William, Duan, Chaojing, Rosenberg, Michael A., Liu, Emerson, Zhao, Ding
Large Language Models (LLMs) have shown remarkable adaptability across domains beyond text, specifically electrocardiograms (ECGs). More specifically, there is a growing body of work exploring the task of generating text from a multi-channeled ECG and corresponding textual prompt. Current approaches typically involve pretraining an ECG-specific encoder with a self-supervised learning (SSL) objective and using the features output by the pretrained encoder to finetune a LLM for natural language generation (NLG). However, these methods are limited by 1) inefficiency from two-stage training and 2) interpretability challenges with encoder-generated features. To address these limitations, we introduce ECG-Byte, an adapted byte pair encoding (BPE) tokenizer pipeline for autoregressive language modeling of ECGs. This approach compresses and encodes ECG signals into tokens, enabling end-to-end LLM training by combining ECG and text tokens directly, while being much more interpretable since the ECG tokens can be directly mapped back to the original signal. Using ECG-Byte, we achieve competitive performance in NLG tasks in only half the time and ~48% of the data required by two-stage approaches.
Interpretation of Intracardiac Electrograms Through Textual Representations
Han, William Jongwon, Gomez, Diana, Alok, Avi, Duan, Chaojing, Rosenberg, Michael A., Weber, Douglas, Liu, Emerson, Zhao, Ding
Understanding the irregular electrical activity of atrial fibrillation (AFib) has been a key challenge in electrocardiography. For serious cases of AFib, catheter ablations are performed to collect intracardiac electrograms (EGMs). EGMs offer intricately detailed and localized electrical activity of the heart and are an ideal modality for interpretable cardiac studies. Recent advancements in artificial intelligence (AI) has allowed some works to utilize deep learning frameworks to interpret EGMs during AFib. Additionally, language models (LMs) have shown exceptional performance in being able to generalize to unseen domains, especially in healthcare. In this study, we are the first to leverage pretrained LMs for finetuning of EGM interpolation and AFib classification via masked language modeling. We formulate the EGM as a textual sequence and present competitive performances on AFib classification compared against other representations. Lastly, we provide a comprehensive interpretability study to provide a multi-perspective intuition of the model's behavior, which could greatly benefit the clinical use.
Transfer Knowledge from Natural Language to Electrocardiography: Can We Detect Cardiovascular Disease Through Language Models?
Qiu, Jielin, Han, William, Zhu, Jiacheng, Xu, Mengdi, Rosenberg, Michael, Liu, Emerson, Weber, Douglas, Zhao, Ding
Recent advancements in Large Language Models (LLMs) have drawn increasing attention since the learned embeddings pretrained on large-scale datasets have shown powerful ability in various downstream applications. However, whether the learned knowledge by LLMs can be transferred to clinical cardiology remains unknown. In this work, we aim to bridge this gap by transferring the knowledge of LLMs to clinical Electrocardiography (ECG). We propose an approach for cardiovascular disease diagnosis and automatic ECG diagnosis report generation. We also introduce an additional loss function by Optimal Transport (OT) to align the distribution between ECG and language embedding. The learned embeddings are evaluated on two downstream tasks: (1) automatic ECG diagnosis report generation, and (2) zero-shot cardiovascular disease detection. Our approach is able to generate high-quality cardiac diagnosis reports and also achieves competitive zero-shot classification performance even compared with supervised baselines, which proves the feasibility of transferring knowledge from LLMs to the cardiac domain.
Optimal Transport based Data Augmentation for Heart Disease Diagnosis and Prediction
Qiu, Jielin, Zhu, Jiacheng, Rosenberg, Michael, Liu, Emerson, Zhao, Ding
In this paper, we focus on a new method of data augmentation to solve the data imbalance problem within imbalanced ECG datasets to improve the robustness and accuracy of heart disease detection. By using Optimal Transport, we augment the ECG disease data from normal ECG beats to balance the data among different categories. We build a Multi-Feature Transformer (MF-Transformer) as our classification model, where different features are extracted from both time and frequency domains to diagnose various heart conditions. Learning from 12-lead ECG signals, our model is able to distinguish five categories of cardiac conditions. Our results demonstrate 1) the classification models' ability to make competitive predictions on five ECG categories; 2) improvements in accuracy and robustness reflecting the effectiveness of our data augmentation method.