Plotting

 Liu, Di


Large Language Models for Mathematical Reasoning: Progresses and Challenges

arXiv.org Artificial Intelligence

Mathematical reasoning serves as a cornerstone for assessing the fundamental cognitive capabilities of human intelligence. In recent times, there has been a notable surge in the development of Large Language Models (LLMs) geared towards the automated resolution of mathematical problems. However, the landscape of mathematical problem types is vast and varied, with LLM-oriented techniques undergoing evaluation across diverse datasets and settings. This diversity makes it challenging to discern the true advancements and obstacles within this burgeoning field. This survey endeavors to address four pivotal dimensions: i) a comprehensive exploration of the various mathematical problems and their corresponding datasets that have been investigated; ii) an examination of the spectrum of LLM-oriented techniques that have been proposed for mathematical problem-solving; iii) an overview of factors and concerns affecting LLMs in solving math; and iv) an elucidation of the persisting challenges within this domain. To the best of our knowledge, this survey stands as one of the first extensive examinations of the landscape of LLMs in the realm of mathematics, providing a holistic perspective on the current state, accomplishments, and future challenges in this rapidly evolving field.


Clustering Molecular Energy Landscapes by Adaptive Network Embedding

arXiv.org Artificial Intelligence

In order to efficiently explore the chemical space of all possible small molecules, a common approach is to compress the dimension of the system to facilitate downstream machine learning tasks. Towards this end, we present a data driven approach for clustering potential energy landscapes of molecular structures by applying recently developed Network Embedding techniques, to obtain latent variables defined through the embedding function. To scale up the method, we also incorporate an entropy sensitive adaptive scheme for hierarchical sampling of the energy landscape, based on Metadynamics and Transition Path Theory. By taking into account the kinetic information implied by a system's energy landscape, we are able to interpret dynamical node-node relationships in reduced dimensions. We demonstrate the framework through Lennard-Jones (LJ) clusters and a human DNA sequence.


Steering Prototypes with Prompt-tuning for Rehearsal-free Continual Learning

arXiv.org Artificial Intelligence

In the context of continual learning, prototypes-as representative class embeddings-offer advantages in memory conservation and the mitigation of catastrophic forgetting. However, challenges related to semantic drift and prototype interference persist. In this study, we introduce the Contrastive Prototypical Prompt (CPP) approach. Through task-specific prompt-tuning, underpinned by a contrastive learning objective, we effectively address both aforementioned challenges. Our evaluations on four challenging class-incremental benchmarks reveal that CPP achieves a significant 4% to 6% improvement over state-of-the-art methods. Importantly, CPP operates without a rehearsal buffer and narrows the performance divergence between continual and offline joint-learning, suggesting an innovative scheme for Transformer-based continual learning systems.


Pairwise GUI Dataset Construction Between Android Phones and Tablets

arXiv.org Artificial Intelligence

In the current landscape of pervasive smartphones and tablets, apps frequently exist across both platforms. Although apps share most graphic user interfaces (GUIs) and functionalities across phones and tablets, developers often rebuild from scratch for tablet versions, escalating costs and squandering existing design resources. Researchers are attempting to collect data and employ deep learning in automated GUIs development to enhance developers' productivity. There are currently several publicly accessible GUI page datasets for phones, but none for pairwise GUIs between phones and tablets. This poses a significant barrier to the employment of deep learning in automated GUI development. In this paper, we introduce the Papt dataset, a pioneering pairwise GUI dataset tailored for Android phones and tablets, encompassing 10,035 phone-tablet GUI page pairs sourced from 5,593 unique app pairs. We propose novel pairwise GUI collection approaches for constructing this dataset and delineate its advantages over currently prevailing datasets in the field. Through preliminary experiments on this dataset, we analyze the present challenges of utilizing deep learning in automated GUI development.


Ultrafast-and-Ultralight ConvNet-Based Intelligent Monitoring System for Diagnosing Early-Stage Mpox Anytime and Anywhere

arXiv.org Artificial Intelligence

Due to the lack of more efficient diagnostic tools for monkeypox, its spread remains unchecked, presenting a formidable challenge to global health. While the high efficacy of deep learning models for monkeypox diagnosis has been demonstrated in related studies, the overlook of inference speed, the parameter size and diagnosis performance for early-stage monkeypox renders the models inapplicable in real-world settings. To address these challenges, we proposed an ultrafast and ultralight network named Fast-MpoxNet. Fast-MpoxNet possesses only 0.27M parameters and can process input images at 68 frames per second (FPS) on the CPU. To counteract the diagnostic performance limitation brought about by the small model capacity, it integrates the attention-based feature fusion module and the multiple auxiliary losses enhancement strategy for better detecting subtle image changes and optimizing weights. Using transfer learning and five-fold cross-validation, Fast-MpoxNet achieves 94.26% Accuracy on the Mpox dataset. Notably, its recall for early-stage monkeypox achieves 93.65%. By adopting data augmentation, our model's Accuracy rises to 98.40% and attains a Practicality Score (A new metric for measuring model practicality in real-time diagnosis application) of 0.80. We also developed an application system named Mpox-AISM V2 for both personal computers and mobile phones. Mpox-AISM V2 features ultrafast responses, offline functionality, and easy deployment, enabling accurate and real-time diagnosis for both the public and individuals in various real-world settings, especially in populous settings during the outbreak. Our work could potentially mitigate future monkeypox outbreak and illuminate a fresh paradigm for developing real-time diagnostic tools in the healthcare field.


Biomedical image analysis competitions: The state of current participation practice

arXiv.org Artificial Intelligence

The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.


Deep Deformable Models: Learning 3D Shape Abstractions with Part Consistency

arXiv.org Artificial Intelligence

The task of shape abstraction with semantic part consistency is challenging due to the complex geometries of natural objects. Recent methods learn to represent an object shape using a set of simple primitives to fit the target. \textcolor{black}{However, in these methods, the primitives used do not always correspond to real parts or lack geometric flexibility for semantic interpretation.} In this paper, we investigate salient and efficient primitive descriptors for accurate shape abstractions, and propose \textit{Deep Deformable Models (DDMs)}. DDM employs global deformations and diffeomorphic local deformations. These properties enable DDM to abstract complex object shapes with significantly fewer primitives that offer broader geometry coverage and finer details. DDM is also capable of learning part-level semantic correspondences due to the differentiable and invertible properties of our primitive deformation. Moreover, DDM learning formulation is based on dynamic and kinematic modeling, which enables joint regularization of each sub-transformation during primitive fitting. Extensive experiments on \textit{ShapeNet} demonstrate that DDM outperforms the state-of-the-art in terms of reconstruction and part consistency by a notable margin.


Network Embedding Using Sparse Approximations of Random Walks

arXiv.org Artificial Intelligence

In this paper, we propose an efficient numerical implementation of Network Embedding based on commute times, using sparse approximation of a diffusion process on the network obtained by a modified version of the diffusion wavelet algorithm. The node embeddings are computed by optimizing the cross entropy loss via the stochastic gradient descent method with sampling of low-dimensional representations of green functions. We demonstrate the efficacy of this method for data clustering and multi-label classification through several examples, and compare its performance over existing methods in terms of efficiency and accuracy. Theoretical issues justifying the scheme are also discussed.


Dealing With Heterogeneous 3D MR Knee Images: A Federated Few-Shot Learning Method With Dual Knowledge Distillation

arXiv.org Artificial Intelligence

Federated Learning has gained popularity among medical institutions since it enables collaborative training between clients (e.g., hospitals) without aggregating data. However, due to the high cost associated with creating annotations, especially for large 3D image datasets, clinical institutions do not have enough supervised data for training locally. Thus, the performance of the collaborative model is subpar under limited supervision. On the other hand, large institutions have the resources to compile data repositories with high-resolution images and labels. Therefore, individual clients can utilize the knowledge acquired in the public data repositories to mitigate the shortage of private annotated images. In this paper, we propose a federated few-shot learning method with dual knowledge distillation. This method allows joint training with limited annotations across clients without jeopardizing privacy. The supervised learning of the proposed method extracts features from limited labeled data in each client, while the unsupervised data is used to distill both feature and response-based knowledge from a national data repository to further improve the accuracy of the collaborative model and reduce the communication cost. Extensive evaluations are conducted on 3D magnetic resonance knee images from a private clinical dataset. Our proposed method shows superior performance and less training time than other semi-supervised federated learning methods. Codes and additional visualization results are available at https://github.com/hexiaoxiao-cs/fedml-knee.


Improving Generalization with Domain Convex Game

arXiv.org Artificial Intelligence

Domain generalization (DG) tends to alleviate the poor generalization capability of deep neural networks by learning model with multiple source domains. A classical solution to DG is domain augmentation, the common belief of which is that diversifying source domains will be conducive to the out-of-distribution generalization. However, these claims are understood intuitively, rather than mathematically. Our explorations empirically reveal that the correlation between model generalization and the diversity of domains may be not strictly positive, which limits the effectiveness of domain augmentation. This work therefore aim to guarantee and further enhance the validity of this strand. To this end, we propose a new perspective on DG that recasts it as a convex game between domains. We first encourage each diversified domain to enhance model generalization by elaborately designing a regularization term based on supermodularity. Meanwhile, a sample filter is constructed to eliminate low-quality samples, thereby avoiding the impact of potentially harmful information. Our framework presents a new avenue for the formal analysis of DG, heuristic analysis and extensive experiments demonstrate the rationality and effectiveness.