Liu, Chenying
Designing Kresling Origami for Personalised Wrist Orthosis
Liu, Chenying, Mao, Shuai, Lei, Yixing, He, Liang
The wrist plays a pivotal role in facilitating motion dexterity and hand functions. Wrist orthoses, from passive braces to active exoskeletons, provide an effective solution for the assistance and rehabilitation of motor abilities. However, the type of motions facilitated by currently available orthoses is limited, with little emphasis on personalised design. To address these gaps, this paper proposes a novel wrist orthosis design inspired by the Kresling origami. The design can be adapted to accommodate various individual shape parameters, which benefits from the topological variations and intrinsic compliance of origami. Heat-sealable fabrics are used to replicate the non-rigid nature of the Kresling origami. The orthosis is capable of six distinct motion modes with a detachable tendon-based actuation system. Experimental characterisation of the workspace has been conducted by activating tendons individually. The maximum bending angle in each direction ranges from 18.81{\deg} to 32.63{\deg}. When tendons are pulled in combination, the maximum bending angles in the dorsal, palmar, radial, and ulnar directions are 31.66{\deg}, 30.38{\deg}, 27.14{\deg}, and 14.92{\deg}, respectively. The capability to generate complex motions such as the dart-throwing motion and circumduction has also been experimentally validated. The work presents a promising foundation for the development of personalised wrist orthoses for training and rehabilitation.
AutoLCZ: Towards Automatized Local Climate Zone Mapping from Rule-Based Remote Sensing
Liu, Chenying, Song, Hunsoo, Shreevastava, Anamika, Albrecht, Conrad M
Local climate zones (LCZs) established a standard classification system to categorize the landscape universe for improved urban climate studies. Existing LCZ mapping is guided by human interaction with geographic information systems (GIS) or modelled from remote sensing (RS) data. GIS-based methods do not scale to large areas. However, RS-based methods leverage machine learning techniques to automatize LCZ classification from RS. Yet, RS-based methods require huge amounts of manual labels for training. We propose a novel LCZ mapping framework, termed AutoLCZ, to extract the LCZ classification features from high-resolution RS modalities. We study the definition of numerical rules designed to mimic the LCZ definitions. Those rules model geometric and surface cover properties from LiDAR data. Correspondingly, we enable LCZ classification from RS data in a GIS-based scheme. The proposed AutoLCZ method has potential to reduce the human labor to acquire accurate metadata. At the same time, AutoLCZ sheds light on the physical interpretability of RS-based methods. In a proof-of-concept for New York City (NYC) we leverage airborne LiDAR surveys to model 4 LCZ features to distinguish 10 LCZ types. The results indicate the potential of AutoLCZ as promising avenue for large-scale LCZ mapping from RS data.
DeepLCZChange: A Remote Sensing Deep Learning Model Architecture for Urban Climate Resilience
Sun, Wenlu, Sun, Yao, Liu, Chenying, Albrecht, Conrad M
Urban land use structures impact local climate conditions of metropolitan areas. To shed light on the mechanism of local climate wrt. urban land use, we present a novel, data-driven deep learning architecture and pipeline, DeepLCZChange, to correlate airborne LiDAR data statistics with the Landsat 8 satellite's surface temperature product. A proof-of-concept numerical experiment utilizes corresponding remote sensing data for the city of New York to verify the cooling effect of urban forests.
SSL4EO-S12: A Large-Scale Multi-Modal, Multi-Temporal Dataset for Self-Supervised Learning in Earth Observation
Wang, Yi, Braham, Nassim Ait Ali, Xiong, Zhitong, Liu, Chenying, Albrecht, Conrad M, Zhu, Xiao Xiang
Self-supervised pre-training bears potential to generate expressive representations without human annotation. Most pre-training in Earth observation (EO) are based on ImageNet or medium-size, labeled remote sensing (RS) datasets. We share an unlabeled RS dataset SSL4EO-S12 (Self-Supervised Learning for Earth Observation - Sentinel-1/2) to assemble a large-scale, global, multimodal, and multi-seasonal corpus of satellite imagery from the ESA Sentinel-1 \& -2 satellite missions. For EO applications we demonstrate SSL4EO-S12 to succeed in self-supervised pre-training for a set of methods: MoCo-v2, DINO, MAE, and data2vec. Resulting models yield downstream performance close to, or surpassing accuracy measures of supervised learning. In addition, pre-training on SSL4EO-S12 excels compared to existing datasets. We make openly available the dataset, related source code, and pre-trained models at https://github.com/zhu-xlab/SSL4EO-S12.