Liu, Chenghao
UniTST: Effectively Modeling Inter-Series and Intra-Series Dependencies for Multivariate Time Series Forecasting
Liu, Juncheng, Liu, Chenghao, Woo, Gerald, Wang, Yiwei, Hooi, Bryan, Xiong, Caiming, Sahoo, Doyen
Transformer-based models have emerged as powerful tools for multivariate time series forecasting (MTSF). However, existing Transformer models often fall short of capturing both intricate dependencies across variate and temporal dimensions in MTS data. Some recent models are proposed to separately capture variate and temporal dependencies through either two sequential or parallel attention mechanisms. However, these methods cannot directly and explicitly learn the intricate inter-series and intra-series dependencies. In this work, we first demonstrate that these dependencies are very important as they usually exist in real-world data. To directly model these dependencies, we propose a transformer-based model UniTST containing a unified attention mechanism on the flattened patch tokens. Additionally, we add a dispatcher module which reduces the complexity and makes the model feasible for a potentially large number of variates. Although our proposed model employs a simple architecture, it offers compelling performance as shown in our extensive experiments on several datasets for time series forecasting.
PEMT: Multi-Task Correlation Guided Mixture-of-Experts Enables Parameter-Efficient Transfer Learning
Lin, Zhisheng, Fu, Han, Liu, Chenghao, Li, Zhuo, Sun, Jianling
Parameter-efficient fine-tuning (PEFT) has emerged as an effective method for adapting pre-trained language models to various tasks efficiently. Recently, there has been a growing interest in transferring knowledge from one or multiple tasks to the downstream target task to achieve performance improvements. However, current approaches typically either train adapters on individual tasks or distill shared knowledge from source tasks, failing to fully exploit task-specific knowledge and the correlation between source and target tasks. To overcome these limitations, we propose PEMT, a novel parameter-efficient fine-tuning framework based on multi-task transfer learning. PEMT extends the mixture-of-experts (MoE) framework to capture the transferable knowledge as a weighted combination of adapters trained on source tasks. These weights are determined by a gated unit, measuring the correlation between the target and each source task using task description prompt vectors. To fully exploit the task-specific knowledge, we also propose the Task Sparsity Loss to improve the sparsity of the gated unit. We conduct experiments on a broad range of tasks over 17 datasets. The experimental results demonstrate our PEMT yields stable improvements over full fine-tuning, and state-of-the-art PEFT and knowledge transferring methods on various tasks. The results highlight the effectiveness of our method which is capable of sufficiently exploiting the knowledge and correlation features across multiple tasks.
Time-FFM: Towards LM-Empowered Federated Foundation Model for Time Series Forecasting
Liu, Qingxiang, Liu, Xu, Liu, Chenghao, Wen, Qingsong, Liang, Yuxuan
Unlike natural language processing and computer vision, the development of Foundation Models (FMs) for time series forecasting is blocked due to data scarcity. While recent efforts are focused on building such FMs by unlocking the potential of language models (LMs) for time series analysis, dedicated parameters for various downstream forecasting tasks need training, which hinders the common knowledge sharing across domains. Moreover, data owners may hesitate to share the access to local data due to privacy concerns and copyright protection, which makes it impossible to simply construct a FM on cross-domain training instances. To address these issues, we propose Time-FFM, a Federated Foundation Model for Time series forecasting by leveraging pretrained LMs. Specifically, we begin by transforming time series into the modality of text tokens. To bootstrap LMs for time series reasoning, we propose a prompt adaption module to determine domain-customized prompts dynamically instead of artificially. Given the data heterogeneity across domains, we design a personalized federated training strategy by learning global encoders and local prediction heads. Our comprehensive experiments indicate that Time-FFM outperforms state-of-the-arts and promises effective few-shot and zero-shot forecaster.
Advancing Graph Representation Learning with Large Language Models: A Comprehensive Survey of Techniques
Mao, Qiheng, Liu, Zemin, Liu, Chenghao, Li, Zhuo, Sun, Jianling
The integration of Large Language Models (LLMs) with Graph Representation Learning (GRL) marks a significant evolution in analyzing complex data structures. This collaboration harnesses the sophisticated linguistic capabilities of LLMs to improve the contextual understanding and adaptability of graph models, thereby broadening the scope and potential of GRL. Despite a growing body of research dedicated to integrating LLMs into the graph domain, a comprehensive review that deeply analyzes the core components and operations within these models is notably lacking. Our survey fills this gap by proposing a novel taxonomy that breaks down these models into primary components and operation techniques from a novel technical perspective. We further dissect recent literature into two primary components including knowledge extractors and organizers, and two operation techniques including integration and training stratigies, shedding light on effective model design and training strategies. Additionally, we identify and explore potential future research avenues in this nascent yet underexplored field, proposing paths for continued progress.
CompeteSMoE -- Effective Training of Sparse Mixture of Experts via Competition
Pham, Quang, Do, Giang, Nguyen, Huy, Nguyen, TrungTin, Liu, Chenghao, Sartipi, Mina, Nguyen, Binh T., Ramasamy, Savitha, Li, Xiaoli, Hoi, Steven, Ho, Nhat
Sparse mixture of experts (SMoE) offers an appealing solution to scale up the model complexity beyond the mean of increasing the network's depth or width. However, effective training of SMoE has proven to be challenging due to the representation collapse issue, which causes parameter redundancy and limited representation potentials. In this work, we propose a competition mechanism to address this fundamental challenge of representation collapse. By routing inputs only to experts with the highest neural response, we show that, under mild assumptions, competition enjoys the same convergence rate as the optimal estimator. We further propose CompeteSMoE, an effective and efficient algorithm to train large language models by deploying a simple router that predicts the competition outcomes. Consequently, CompeteSMoE enjoys strong performance gains from the competition routing policy while having low computation overheads. Our extensive empirical evaluations on two transformer architectures and a wide range of tasks demonstrate the efficacy, robustness, and scalability of CompeteSMoE compared to state-of-the-art SMoE strategies.
Unified Training of Universal Time Series Forecasting Transformers
Woo, Gerald, Liu, Chenghao, Kumar, Akshat, Xiong, Caiming, Savarese, Silvio, Sahoo, Doyen
Deep learning for time series forecasting has traditionally operated within a one-model-per-dataset framework, limiting its potential to leverage the game-changing impact of large pre-trained models. The concept of universal forecasting, emerging from pre-training on a vast collection of time series datasets, envisions a single Large Time Series Model capable of addressing diverse downstream forecasting tasks. However, constructing such a model poses unique challenges specific to time series data: i) cross-frequency learning, ii) accommodating an arbitrary number of variates for multivariate time series, and iii) addressing the varying distributional properties inherent in large-scale data. To address these challenges, we present novel enhancements to the conventional time series Transformer architecture, resulting in our proposed Masked Encoder-based Universal Time Series Forecasting Transformer (Moirai). Trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains, Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models. Code, model weights, and data will be released.
Identifiability Matters: Revealing the Hidden Recoverable Condition in Unbiased Learning to Rank
Chen, Mouxiang, Liu, Chenghao, Liu, Zemin, Li, Zhuo, Sun, Jianling
Unbiased Learning to Rank (ULTR) aims to train unbiased ranking models from biased click logs, by explicitly modeling a generation process for user behavior and fitting click data based on examination hypothesis. Previous research found empirically that the true latent relevance is mostly recoverable through perfect click fitting. However, we demonstrate that this is not always achievable, resulting in a significant reduction in ranking performance. This research investigates the conditions under which relevance can be recovered from click data at a foundational level. We initially characterize a ranking model as identifiable if it can recover the true relevance up to a scaling transformation, a criterion sufficient for the pairwise ranking objective. Subsequently, we investigate an equivalent condition for identifiability, articulated as a graph connectivity test problem: the recovery of relevance is feasible if and only if the identifiability graph (IG), derived from the underlying structure of the dataset, is connected. The presence of a disconnected IG may lead to degenerate cases and suboptimal ranking performance. To tackle this challenge, we introduce two methods, namely node intervention and node merging, designed to modify the dataset and restore the connectivity of the IG. Empirical results derived from a simulated dataset and two real-world LTR benchmark datasets not only validate our proposed theorems but also demonstrate the effectiveness of our methods in alleviating data bias when the relevance model is unidentifiable.
ULTRA-DP: Unifying Graph Pre-training with Multi-task Graph Dual Prompt
Chen, Mouxiang, Liu, Zemin, Liu, Chenghao, Li, Jundong, Mao, Qiheng, Sun, Jianling
Recent research has demonstrated the efficacy of pre-training graph neural networks (GNNs) to capture the transferable graph semantics and enhance the performance of various downstream tasks. However, the semantic knowledge learned from pretext tasks might be unrelated to the downstream task, leading to a semantic gap that limits the application of graph pre-training. To reduce this gap, traditional approaches propose hybrid pre-training to combine various pretext tasks together in a multi-task learning fashion and learn multi-grained knowledge, which, however, cannot distinguish tasks and results in some transferable task-specific knowledge distortion by each other. Moreover, most GNNs cannot distinguish nodes located in different parts of the graph, making them fail to learn position-specific knowledge and lead to suboptimal performance. In this work, inspired by the prompt-based tuning in natural language processing, we propose a unified framework for graph hybrid pre-training which injects the task identification and position identification into GNNs through a prompt mechanism, namely multi-task graph dual prompt (ULTRA-DP). Based on this framework, we propose a prompt-based transferability test to find the most relevant pretext task in order to reduce the semantic gap. To implement the hybrid pre-training tasks, beyond the classical edge prediction task (node-node level), we further propose a novel pre-training paradigm based on a group of $k$-nearest neighbors (node-group level). The combination of them across different scales is able to comprehensively express more structural semantics and derive richer multi-grained knowledge. Extensive experiments show that our proposed ULTRA-DP can significantly enhance the performance of hybrid pre-training methods and show the generalizability to other pre-training tasks and backbone architectures.
HyperRouter: Towards Efficient Training and Inference of Sparse Mixture of Experts
Do, Giang, Le, Khiem, Pham, Quang, Nguyen, TrungTin, Doan, Thanh-Nam, Nguyen, Bint T., Liu, Chenghao, Ramasamy, Savitha, Li, Xiaoli, Hoi, Steven
By routing input tokens to only a few split experts, Sparse Mixture-of-Experts has enabled efficient training of large language models. Recent findings suggest that fixing the routers can achieve competitive performance by alleviating the collapsing problem, where all experts eventually learn similar representations. However, this strategy has two key limitations: (i) the policy derived from random routers might be sub-optimal, and (ii) it requires extensive resources during training and evaluation, leading to limited efficiency gains. This work introduces \HyperRout, which dynamically generates the router's parameters through a fixed hypernetwork and trainable embeddings to achieve a balance between training the routers and freezing them to learn an improved routing policy. Extensive experiments across a wide range of tasks demonstrate the superior performance and efficiency gains of \HyperRouter compared to existing routing methods. Our implementation is publicly available at {\url{{https://github.com/giangdip2410/HyperRouter}}}.
Pushing the Limits of Pre-training for Time Series Forecasting in the CloudOps Domain
Woo, Gerald, Liu, Chenghao, Kumar, Akshat, Sahoo, Doyen
Time series has been left behind in the era of pre-training and transfer learning. While research in the fields of natural language processing and computer vision are enjoying progressively larger datasets to train massive models, the most popular time series datasets consist of only tens of thousands of time steps, limiting our ability to study the effectiveness of pre-training and scaling. Recent studies have also cast doubt on the need for expressive models and scale. To alleviate these issues, we introduce three large-scale time series forecasting datasets from the cloud operations (CloudOps) domain, the largest having billions of observations, enabling further study into pre-training and scaling of time series models. We build the empirical groundwork for studying pre-training and scaling of time series models and pave the way for future research by identifying a promising candidate architecture. We show that it is a strong zero-shot baseline and benefits from further scaling, both in model and dataset size. Accompanying these datasets and results is a suite of comprehensive benchmark results comparing classical and deep learning baselines to our pre-trained method - achieving a 27% reduction in error on the largest dataset. Code and datasets can be found https://github.com/SalesforceAIResearch/pretrain-time-series-cloudops.