Liu, Cheng-lin
A comprehensive survey of oracle character recognition: challenges, benchmarks, and beyond
Li, Jing, Chi, Xueke, Wang, Qiufeng, Wang, Dahan, Huang, Kaizhu, Liu, Yongge, Liu, Cheng-lin
Oracle character recognition-an analysis of ancient Chinese inscriptions found on oracle bones-has become a pivotal field intersecting archaeology, paleography, and historical cultural studies. Traditional methods of oracle character recognition have relied heavily on manual interpretation by experts, which is not only labor-intensive but also limits broader accessibility to the general public. With recent breakthroughs in pattern recognition and deep learning, there is a growing movement towards the automation of oracle character recognition (OrCR), showing considerable promise in tackling the challenges inherent to these ancient scripts. However, a comprehensive understanding of OrCR still remains elusive. Therefore, this paper presents a systematic and structured survey of the current landscape of OrCR research. We commence by identifying and analyzing the key challenges of OrCR. Then, we provide an overview of the primary benchmark datasets and digital resources available for OrCR. A review of contemporary research methodologies follows, in which their respective efficacies, limitations, and applicability to the complex nature of oracle characters are critically highlighted and examined. Additionally, our review extends to ancillary tasks associated with OrCR across diverse disciplines, providing a broad-spectrum analysis of its applications. We conclude with a forward-looking perspective, proposing potential avenues for future investigations that could yield significant advancements in the field.
On the Hidden Mystery of OCR in Large Multimodal Models
Liu, Yuliang, Li, Zhang, Li, Hongliang, Yu, Wenwen, Liu, Yang, Yang, Biao, Huang, Mingxin, Peng, Dezhi, Liu, Mingyu, Chen, Mingrui, Li, Chunyuan, Yin, Xucheng, Liu, Cheng-lin, Jin, Lianwen, Bai, Xiang
Large models have recently played a dominant role in natural language processing and multimodal vision-language learning. It remains less explored about their efficacy in text-related visual tasks. We conducted a comprehensive study of existing publicly available multimodal models, evaluating their performance in text recognition (document text, artistic text, handwritten text, scene text), text-based visual question answering (document text, scene text, and bilingual text), key information extraction (receipts, documents, and nutrition facts) and handwritten mathematical expression recognition. Our findings reveal strengths and weaknesses in these models, which primarily rely on semantic understanding for word recognition and exhibit inferior perception of individual character shapes. They also display indifference towards text length and have limited capabilities in detecting finegrained features in images. Consequently, these results demonstrate that even the current most powerful large multimodal models cannot match domain-specific methods in traditional text tasks and face greater challenges in more complex tasks. Most importantly, the baseline results showcased in this study could provide a foundational framework for the conception and assessment of innovative strategies targeted at enhancing zero-shot multimodal techniques. Evaluation pipeline is available at https://github.com/Yuliang-Liu/MultimodalOCR.