Liu, Chaoyu
Enhancing Fourier Neural Operators with Local Spatial Features
Liu, Chaoyu, Murari, Davide, Budd, Chris, Liu, Lihao, Schönlieb, Carola-Bibiane
Partial Differential Equation (PDE) problems often exhibit strong local spatial structures, and effectively capturing these structures is critical for approximating their solutions. Recently, the Fourier Neural Operator (FNO) has emerged as an efficient approach for solving these PDE problems. By using parametrization in the frequency domain, FNOs can efficiently capture global patterns. However, this approach inherently overlooks the critical role of local spatial features, as frequency-domain parameterized convolutions primarily emphasize global interactions without encoding comprehensive localized spatial dependencies. Although several studies have attempted to address this limitation, their extracted Local Spatial Features (LSFs) remain insufficient, and computational efficiency is often compromised. To address this limitation, we introduce a convolutional neural network (CNN) preprocessor to extract LSFs directly from input data, resulting in a hybrid architecture termed \textit{Conv-FNO}. Furthermore, we introduce two novel resizing schemes to make our Conv-FNO resolution invariant. In this work, we focus on demonstrating the effectiveness of incorporating LSFs into FNOs by conducting both a theoretical analysis and extensive numerical experiments. Our findings show that this simple yet impactful modification enhances the representational capacity of FNOs and significantly improves performance on challenging PDE benchmarks.
Inverse Evolution Data Augmentation for Neural PDE Solvers
Liu, Chaoyu, Budd, Chris, Schönlieb, Carola-Bibiane
Neural networks have emerged as promising tools for solving partial differential equations (PDEs), particularly through the application of neural operators. Training neural operators typically requires a large amount of training data to ensure accuracy and generalization. In this paper, we propose a novel data augmentation method specifically designed for training neural operators on evolution equations. Our approach utilizes insights from inverse processes of these equations to efficiently generate data from random initialization that are combined with original data. To further enhance the accuracy of the augmented data, we introduce high-order inverse evolution schemes. These schemes consist of only a few explicit computation steps, yet the resulting data pairs can be proven to satisfy the corresponding implicit numerical schemes. In contrast to traditional PDE solvers that require small time steps or implicit schemes to guarantee accuracy, our data augmentation method employs explicit schemes with relatively large time steps, thereby significantly reducing computational costs. Accuracy and efficacy experiments confirm the effectiveness of our approach. Additionally, we validate our approach through experiments with the Fourier Neural Operator and UNet on three common evolution equations that are Burgers' equation, the Allen-Cahn equation and the Navier-Stokes equation. The results demonstrate a significant improvement in the performance and robustness of the Fourier Neural Operator when coupled with our inverse evolution data augmentation method.
Inverse Evolution Layers: Physics-informed Regularizers for Deep Neural Networks
Liu, Chaoyu, Qiao, Zhonghua, Li, Chao, Schönlieb, Carola-Bibiane
This paper proposes a novel approach to integrating partial differential equation (PDE)-based evolution models into neural networks through a new type of regularization. Specifically, we propose inverse evolution layers (IELs) based on evolution equations. These layers can achieve specific regularization objectives and endow neural networks' outputs with corresponding properties of the evolution models. Moreover, IELs are straightforward to construct and implement, and can be easily designed for various physical evolutions and neural networks. Additionally, the design process for these layers can provide neural networks with intuitive and mathematical interpretability, thus enhancing the transparency and explainability of the approach. To demonstrate the effectiveness, efficiency, and simplicity of our approach, we present an example of endowing semantic segmentation models with the smoothness property based on the heat diffusion model. To achieve this goal, we design heat-diffusion IELs and apply them to address the challenge of semantic segmentation with noisy labels. The experimental results demonstrate that the heat-diffusion IELs can effectively mitigate the overfitting problem caused by noisy labels.