Liu, Baolin
MIM: Multi-modal Content Interest Modeling Paradigm for User Behavior Modeling
Yan, Bencheng, Chen, Si, Jia, Shichang, Liu, Jianyu, Liu, Yueran, Fu, Chenghan, Guan, Wanxian, Zhao, Hui, Zhang, Xiang, Zhang, Kai, Su, Wenbo, Wang, Pengjie, Xu, Jian, Zheng, Bo, Liu, Baolin
Click-Through Rate (CTR) prediction is a crucial task in recommendation systems, online searches, and advertising platforms, where accurately capturing users' real interests in content is essential for performance. However, existing methods heavily rely on ID embeddings, which fail to reflect users' true preferences for content such as images and titles. This limitation becomes particularly evident in cold-start and long-tail scenarios, where traditional approaches struggle to deliver effective results. To address these challenges, we propose a novel Multi-modal Content Interest Modeling paradigm (MIM), which consists of three key stages: Pre-training, Content-Interest-Aware Supervised Fine-Tuning (C-SFT), and Content-Interest-Aware UBM (CiUBM). The pre-training stage adapts foundational models to domain-specific data, enabling the extraction of high-quality multi-modal embeddings. The C-SFT stage bridges the semantic gap between content and user interests by leveraging user behavior signals to guide the alignment of embeddings with user preferences. Finally, the CiUBM stage integrates multi-modal embeddings and ID-based collaborative filtering signals into a unified framework. Comprehensive offline experiments and online A/B tests conducted on the Taobao, one of the world's largest e-commerce platforms, demonstrated the effectiveness and efficiency of MIM method. The method has been successfully deployed online, achieving a significant increase of +14.14% in CTR and +4.12% in RPM, showcasing its industrial applicability and substantial impact on platform performance. To promote further research, we have publicly released the code and dataset at https://pan.quark.cn/s/8fc8ec3e74f3.
Capturing Conversion Rate Fluctuation during Sales Promotions: A Novel Historical Data Reuse Approach
Chan, Zhangming, Zhang, Yu, Han, Shuguang, Bai, Yong, Sheng, Xiang-Rong, Lou, Siyuan, Hu, Jiacen, Liu, Baolin, Jiang, Yuning, Xu, Jian, Zheng, Bo
Conversion rate (CVR) prediction is one of the core components in online recommender systems, and various approaches have been proposed to obtain accurate and well-calibrated CVR estimation. However, we observe that a well-trained CVR prediction model often performs sub-optimally during sales promotions. This can be largely ascribed to the problem of the data distribution shift, in which the conventional methods no longer work. To this end, we seek to develop alternative modeling techniques for CVR prediction. Observing similar purchase patterns across different promotions, we propose reusing the historical promotion data to capture the promotional conversion patterns. Herein, we propose a novel \textbf{H}istorical \textbf{D}ata \textbf{R}euse (\textbf{HDR}) approach that first retrieves historically similar promotion data and then fine-tunes the CVR prediction model with the acquired data for better adaptation to the promotion mode. HDR consists of three components: an automated data retrieval module that seeks similar data from historical promotions, a distribution shift correction module that re-weights the retrieved data for better aligning with the target promotion, and a TransBlock module that quickly fine-tunes the original model for better adaptation to the promotion mode. Experiments conducted with real-world data demonstrate the effectiveness of HDR, as it improves both ranking and calibration metrics to a large extent. HDR has also been deployed on the display advertising system in Alibaba, bringing a lift of $9\%$ RPM and $16\%$ CVR during Double 11 Sales in 2022.
Collision-free Motion Generation Based on Stochastic Optimization and Composite Signed Distance Field Networks of Articulated Robot
Liu, Baolin, Jiang, Gedong, Zhao, Fei, Mei, Xuesong
Safe robot motion generation is critical for practical applications from manufacturing to homes. In this work, we proposed a stochastic optimization-based motion generation method to generate collision-free and time-optimal motion for the articulated robot represented by composite signed distance field (SDF) networks. First, we propose composite SDF networks to learn the SDF for articulated robots. The learned composite SDF networks combined with the kinematics of the robot allow for quick and accurate estimates of the minimum distance between the robot and obstacles in a batch fashion. Then, a stochastic optimization-based trajectory planning algorithm generates a spatial-optimized and collision-free trajectory offline with the learned composite SDF networks. This stochastic trajectory planner is formulated as a Bayesian Inference problem with a time-normalized Gaussian process prior and exponential likelihood function. The Gaussian process prior can enforce initial and goal position constraints in Configuration Space. Besides, it can encode the correlation of waypoints in time series. The likelihood function aims at encoding task-related cost terms, such as collision avoidance, trajectory length penalty, boundary avoidance, etc. The kernel updating strategies combined with model-predictive path integral (MPPI) is proposed to solve the maximum a posteriori inference problems. Lastly, we integrate the learned composite SDF networks into the trajectory planning algorithm and apply it to a Franka Emika Panda robot. The simulation and experiment results validate the effectiveness of the proposed method.