Liu, Ao
An Audio-Visual Fusion Emotion Generation Model Based on Neuroanatomical Alignment
Wang, Haidong, Shan, Qia, Zhang, JianHua, Xiao, PengFei, Liu, Ao
In the field of affective computing, traditional methods for generating emotions predominantly rely on deep learning techniques and large-scale emotion datasets. However, deep learning techniques are often complex and difficult to interpret, and standardizing large-scale emotional datasets are difficult and costly to establish. To tackle these challenges, we introduce a novel framework named Audio-Visual Fusion for Brain-like Emotion Learning(AVF-BEL). In contrast to conventional brain-inspired emotion learning methods, this approach improves the audio-visual emotion fusion and generation model through the integration of modular components, thereby enabling more lightweight and interpretable emotion learning and generation processes. The framework simulates the integration of the visual, auditory, and emotional pathways of the brain, optimizes the fusion of emotional features across visual and auditory modalities, and improves upon the traditional Brain Emotional Learning (BEL) model. The experimental results indicate a significant improvement in the similarity of the audio-visual fusion emotion learning generation model compared to single-modality visual and auditory emotion learning and generation model. Ultimately, this aligns with the fundamental phenomenon of heightened emotion generation facilitated by the integrated impact of visual and auditory stimuli. This contribution not only enhances the interpretability and efficiency of affective intelligence but also provides new insights and pathways for advancing affective computing technology. Our source code can be accessed here: https://github.com/OpenHUTB/emotion}{https://github.com/OpenHUTB/emotion.
A Brain-Inspired Perception-Decision Driving Model Based on Neural Pathway Anatomical Alignment
Wang, Haidong, Xiao, Pengfei, Liu, Ao, Shan, Qia, Zhang, Jianhua
--In the realm of autonomous driving, conventional approaches for vehicle perception and decision-making primarily rely on sensor input and rule-based algorithms. However, these methodologies often suffer from lack of interpretability and robustness, particularly in intricate traffic scenarios. T o tackle this challenge, we propose a novel brain-inspired driving (BID) framework. Diverging from traditional methods, our approach harnesses brain-inspired perception technology to achieve more efficient and robust environmental perception. Additionally, it employs brain-inspired decision-making techniques to facilitate intelligent decision-making. The experimental results show that the performance has been significantly improved across various autonomous driving tasks and achieved the end-to-end autopilot successfully. This contribution not only advances interpretability and robustness but also offers fancy insights and methodologies for further advancing autonomous driving technology. Autonomous driving [1], [2] is an advanced technology that intelligent vehicles perceive road environments through onboard sensor systems, autonomously plan driving routes, and control vehicles to reach predetermined destinations. Its technical system generally includes three major parts: environmental perception, decision planning, and vehicle control [3], involving multiple research fields such as computer science, mathematics, mechanical engineering, control science, and psychology [4]. However, the current autonomous driving systems still suffer from insufficient interpretability due to the existence of "black box" nature of deep learning models [5], greatly limiting the credibility and widespread application of various perception and decision-making methods in practical engineering. Even though the use of generative adversarial networks [6] to generate explanatory data related to decision-making has been attempted, the quality of such data is often substandard, and the training process is quite challenging.
BAN: Neuroanatomical Aligning in Auditory Recognition between Artificial Neural Network and Human Cortex
Wang, Haidong, Xiao, Pengfei, Liu, Ao, Zhang, Jianhua, Shan, Qia
--Drawing inspiration from neurosciences, artificial neural networks (ANNs) have evolved from shallow architectures to highly complex, deep structures, yielding exceptional performance in auditory recognition tasks. However, traditional ANNs often struggle to align with brain regions due to their excessive depth and lack of biologically realistic features, like recurrent connection. T o address this, a brain-like auditory network (BAN) is introduced, which incorporates four neuroanatomically mapped areas and recurrent connection, guided by a novel metric called the brain-like auditory score (BAS). BAS serves as a benchmark for evaluating the similarity between BAN and human auditory recognition pathway. We further propose that specific areas in the cerebral cortex, mainly the middle and medial superior temporal (T2/T3) areas, correspond to the designed network structure, drawing parallels with the brain's auditory perception pathway. Our findings suggest that the neuroanatomical similarity in the cortex and auditory classification abilities of the ANN are well-aligned. In addition to delivering excellent performance on a music genre classification task, the BAN demonstrates a high BAS score. In conclusion, this study presents BAN as a recurrent, brain-inspired ANN, representing the first model that mirrors the cortical pathway of auditory recognition. EARING plays a vital role in human sound recognition and is especially important for the comprehension and creation of music. One key task in this domain is genre classification, which involves predicting the genre of a piece of music based on its audio signal. Music genres, such as jazz, rock, and classical, serve as descriptive labels that provide high-level information about a musical piece. As noted by previous work [2], genres are classes introduced by humans to categorize musical works.
Grimm: A Plug-and-Play Perturbation Rectifier for Graph Neural Networks Defending against Poisoning Attacks
Liu, Ao, Li, Wenshan, Li, Beibei, Ma, Wengang, Li, Tao, Zhou, Pan
Recent studies have revealed the vulnerability of graph neural networks (GNNs) to adversarial poisoning attacks on node classification tasks. Current defensive methods require substituting the original GNNs with defense models, regardless of the original's type. This approach, while targeting adversarial robustness, compromises the enhancements developed in prior research to boost GNNs' practical performance. Here we introduce Grimm, the first plug-and-play defense model. With just a minimal interface requirement for extracting features from any layer of the protected GNNs, Grimm is thus enabled to seamlessly rectify perturbations. Specifically, we utilize the feature trajectories (FTs) generated by GNNs, as they evolve through epochs, to reflect the training status of the networks. We then theoretically prove that the FTs of victim nodes will inevitably exhibit discriminable anomalies. Consequently, inspired by the natural parallelism between the biological nervous and immune systems, we construct Grimm, a comprehensive artificial immune system for GNNs. Grimm not only detects abnormal FTs and rectifies adversarial edges during training but also operates efficiently in parallel, thereby mirroring the concurrent functionalities of its biological counterparts. We experimentally confirm that Grimm offers four empirically validated advantages: 1) Harmlessness, as it does not actively interfere with GNN training; 2) Parallelism, ensuring monitoring, detection, and rectification functions operate independently of the GNN training process; 3) Generalizability, demonstrating compatibility with mainstream GNNs such as GCN, GAT, and GraphSAGE; and 4) Transferability, as the detectors for abnormal FTs can be efficiently transferred across different systems for one-step rectification.
HeteroSample: Meta-path Guided Sampling for Heterogeneous Graph Representation Learning
Liu, Ao, Chen, Jing, Du, Ruiying, Wu, Cong, Feng, Yebo, Li, Teng, Ma, Jianfeng
The rapid expansion of Internet of Things (IoT) has resulted in vast, heterogeneous graphs that capture complex interactions among devices, sensors, and systems. Efficient analysis of these graphs is critical for deriving insights in IoT scenarios such as smart cities, industrial IoT, and intelligent transportation systems. However, the scale and diversity of IoT-generated data present significant challenges, and existing methods often struggle with preserving the structural integrity and semantic richness of these complex graphs. Many current approaches fail to maintain the balance between computational efficiency and the quality of the insights generated, leading to potential loss of critical information necessary for accurate decision-making in IoT applications. We introduce HeteroSample, a novel sampling method designed to address these challenges by preserving the structural integrity, node and edge type distributions, and semantic patterns of IoT-related graphs. HeteroSample works by incorporating the novel top-leader selection, balanced neighborhood expansion, and meta-path guided sampling strategies. The key idea is to leverage the inherent heterogeneous structure and semantic relationships encoded by meta-paths to guide the sampling process. This approach ensures that the resulting subgraphs are representative of the original data while significantly reducing computational overhead. Extensive experiments demonstrate that HeteroSample outperforms state-of-the-art methods, achieving up to 15% higher F1 scores in tasks such as link prediction and node classification, while reducing runtime by 20%.These advantages make HeteroSample a transformative tool for scalable and accurate IoT applications, enabling more effective and efficient analysis of complex IoT systems, ultimately driving advancements in smart cities, industrial IoT, and beyond.
Hunyuan-Large: An Open-Source MoE Model with 52 Billion Activated Parameters by Tencent
Sun, Xingwu, Chen, Yanfeng, Huang, Yiqing, Xie, Ruobing, Zhu, Jiaqi, Zhang, Kai, Li, Shuaipeng, Yang, Zhen, Han, Jonny, Shu, Xiaobo, Bu, Jiahao, Chen, Zhongzhi, Huang, Xuemeng, Lian, Fengzong, Yang, Saiyong, Yan, Jianfeng, Zeng, Yuyuan, Ren, Xiaoqin, Yu, Chao, Wu, Lulu, Mao, Yue, Xia, Jun, Yang, Tao, Zheng, Suncong, Wu, Kan, Jiao, Dian, Xue, Jinbao, Zhang, Xipeng, Wu, Decheng, Liu, Kai, Wu, Dengpeng, Xu, Guanghui, Chen, Shaohua, Chen, Shuang, Feng, Xiao, Hong, Yigeng, Zheng, Junqiang, Xu, Chengcheng, Li, Zongwei, Kuang, Xiong, Hu, Jianglu, Chen, Yiqi, Deng, Yuchi, Li, Guiyang, Liu, Ao, Zhang, Chenchen, Hu, Shihui, Zhao, Zilong, Wu, Zifan, Ding, Yao, Wang, Weichao, Liu, Han, Wang, Roberts, Fei, Hao, Yu, Peijie, Zhao, Ze, Cao, Xun, Wang, Hai, Xiang, Fusheng, Huang, Mengyuan, Xiong, Zhiyuan, Hu, Bin, Hou, Xuebin, Jiang, Lei, Ma, Jianqiang, Wu, Jiajia, Deng, Yaping, Shen, Yi, Wang, Qian, Liu, Weijie, Liu, Jie, Chen, Meng, Dong, Liang, Jia, Weiwen, Chen, Hu, Liu, Feifei, Yuan, Rui, Xu, Huilin, Yan, Zhenxiang, Cao, Tengfei, Hu, Zhichao, Feng, Xinhua, Du, Dong, Yu, Tinghao, Tao, Yangyu, Zhang, Feng, Zhu, Jianchen, Xu, Chengzhong, Li, Xirui, Zha, Chong, Ouyang, Wen, Xia, Yinben, Li, Xiang, He, Zekun, Chen, Rongpeng, Song, Jiawei, Chen, Ruibin, Jiang, Fan, Zhao, Chongqing, Wang, Bo, Gong, Hao, Gan, Rong, Hu, Winston, Kang, Zhanhui, Yang, Yong, Liu, Yuhong, Wang, Di, Jiang, Jie
In this paper, we introduce Hunyuan-Large, which is currently the largest open-source Transformer-based mixture of experts model, with a total of 389 billion parameters and 52 billion activation parameters, capable of handling up to 256K tokens. We conduct a thorough evaluation of Hunyuan-Large's superior performance across various benchmarks including language understanding and generation, logical reasoning, mathematical problem-solving, coding, long-context, and aggregated tasks, where it outperforms LLama3.1-70B and exhibits comparable performance when compared to the significantly larger LLama3.1-405B model. Key practice of Hunyuan-Large include large-scale synthetic data that is orders larger than in previous literature, a mixed expert routing strategy, a key-value cache compression technique, and an expert-specific learning rate strategy. Additionally, we also investigate the scaling laws and learning rate schedule of mixture of experts models, providing valuable insights and guidances for future model development and optimization. The code and checkpoints of Hunyuan-Large are released to facilitate future innovations and applications. Codes: https://github.com/Tencent/Hunyuan-Large Models: https://huggingface.co/tencent/Tencent-Hunyuan-Large
GraphPub: Generation of Differential Privacy Graph with High Availability
Xu, Wanghan, Shi, Bin, Liu, Ao, Zhang, Jiqiang, Dong, Bo
In recent years, with the rapid development of graph neural networks (GNN), more and more graph datasets have been published for GNN tasks. However, when an upstream data owner publishes graph data, there are often many privacy concerns, because many real-world graph data contain sensitive information like person's friend list. Differential privacy (DP) is a common method to protect privacy, but due to the complex topological structure of graph data, applying DP on graphs often affects the message passing and aggregation of GNN models, leading to a decrease in model accuracy. In this paper, we propose a novel graph edge protection framework, graph publisher (GraphPub), which can protect graph topology while ensuring that the availability of data is basically unchanged. Through reverse learning and the encoder-decoder mechanism, we search for some false edges that do not have a large negative impact on the aggregation of node features, and use them to replace some real edges. The modified graph will be published, which is difficult to distinguish between real and false data. Sufficient experiments prove that our framework achieves model accuracy close to the original graph with an extremely low privacy budget.
Towards Inductive Robustness: Distilling and Fostering Wave-induced Resonance in Transductive GCNs Against Graph Adversarial Attacks
Liu, Ao, Li, Wenshan, Li, Tao, Li, Beibei, Huang, Hanyuan, Zhou, Pan
Graph neural networks (GNNs) have recently been shown to be vulnerable to adversarial attacks, where slight perturbations in the graph structure can lead to erroneous predictions. However, current robust models for defending against such attacks inherit the transductive limitations of graph convolutional networks (GCNs). As a result, they are constrained by fixed structures and do not naturally generalize to unseen nodes. Here, we discover that transductive GCNs inherently possess a distillable robustness, achieved through a wave-induced resonance process. Based on this, we foster this resonance to facilitate inductive and robust learning. Specifically, we first prove that the signal formed by GCN-driven message passing (MP) is equivalent to the edge-based Laplacian wave, where, within a wave system, resonance can naturally emerge between the signal and its transmitting medium. This resonance provides inherent resistance to malicious perturbations inflicted on the signal system. We then prove that merely three MP iterations within GCNs can induce signal resonance between nodes and edges, manifesting as a coupling between nodes and their distillable surrounding local subgraph. Consequently, we present Graph Resonance-fostering Network (GRN) to foster this resonance via learning node representations from their distilled resonating subgraphs. By capturing the edge-transmitted signals within this subgraph and integrating them with the node signal, GRN embeds these combined signals into the central node's representation. This node-wise embedding approach allows for generalization to unseen nodes. We validate our theoretical findings with experiments, and demonstrate that GRN generalizes robustness to unseen nodes, whilst maintaining state-of-the-art classification accuracy on perturbed graphs.
Smoothed Differential Privacy
Liu, Ao, Wang, Yu-Xiang, Xia, Lirong
Differential privacy (DP) is a widely-accepted and widely-applied notion of privacy based on worst-case analysis. Often, DP classifies most mechanisms without additive noise as non-private (Dwork et al., 2014). Thus, additive noises are added to improve privacy (to achieve DP). However, in many real-world applications, adding additive noise is undesirable (Bagdasaryan et al., 2019) and sometimes prohibited (Liu et al., 2020). In this paper, we propose a natural extension of DP following the worst average-case idea behind the celebrated smoothed analysis (Spielman & Teng, May 2004). Our notion, smoothed DP, can effectively measure the privacy leakage of mechanisms without additive noises under realistic settings. We prove that any discrete mechanism with sampling procedures is more private than what DP predicts, while many continuous mechanisms with sampling procedures are still non-private under smoothed DP. In addition, we prove several desirable properties of smoothed DP, including composition, robustness to post-processing, and distribution reduction. Based on those properties, we propose an efficient algorithm to calculate the privacy parameters for smoothed DP. Experimentally, we verify that, according to smoothed DP, the discrete sampling mechanisms are private in real-world elections, and some discrete neural networks can be private without adding any additive noise. We believe that these results contribute to the theoretical foundation of realistic privacy measures beyond worst-case analysis.
A Survey on Multimodal Large Language Models for Autonomous Driving
Cui, Can, Ma, Yunsheng, Cao, Xu, Ye, Wenqian, Zhou, Yang, Liang, Kaizhao, Chen, Jintai, Lu, Juanwu, Yang, Zichong, Liao, Kuei-Da, Gao, Tianren, Li, Erlong, Tang, Kun, Cao, Zhipeng, Zhou, Tong, Liu, Ao, Yan, Xinrui, Mei, Shuqi, Cao, Jianguo, Wang, Ziran, Zheng, Chao
With the emergence of Large Language Models (LLMs) and Vision Foundation Models (VFMs), multimodal AI systems benefiting from large models have the potential to equally perceive the real world, make decisions, and control tools as humans. In recent months, LLMs have shown widespread attention in autonomous driving and map systems. Despite its immense potential, there is still a lack of a comprehensive understanding of key challenges, opportunities, and future endeavors to apply in LLM driving systems. In this paper, we present a systematic investigation in this field. We first introduce the background of Multimodal Large Language Models (MLLMs), the multimodal models development using LLMs, and the history of autonomous driving. Then, we overview existing MLLM tools for driving, transportation, and map systems together with existing datasets and benchmarks. Moreover, we summarized the works in The 1st WACV Workshop on Large Language and Vision Models for Autonomous Driving (LLVM-AD), which is the first workshop of its kind regarding LLMs in autonomous driving. To further promote the development of this field, we also discuss several important problems regarding using MLLMs in autonomous driving systems that need to be solved by both academia and industry.