Liu, Anan
CAdam: Confidence-Based Optimization for Online Learning
Wang, Shaowen, Liu, Anan, Xiao, Jian, Liu, Huan, Yang, Yuekui, Xu, Cong, Pu, Qianqian, Zheng, Suncong, Zhang, Wei, Li, Jian
Modern recommendation systems frequently employ online learning to dynamically update their models with freshly collected data. The most commonly used optimizer for updating neural networks in these contexts is the Adam optimizer, which integrates momentum ($m_t$) and adaptive learning rate ($v_t$). However, the volatile nature of online learning data, characterized by its frequent distribution shifts and presence of noises, poses significant challenges to Adam's standard optimization process: (1) Adam may use outdated momentum and the average of squared gradients, resulting in slower adaptation to distribution changes, and (2) Adam's performance is adversely affected by data noise. To mitigate these issues, we introduce CAdam, a confidence-based optimization strategy that assesses the consistence between the momentum and the gradient for each parameter dimension before deciding on updates. If momentum and gradient are in sync, CAdam proceeds with parameter updates according to Adam's original formulation; if not, it temporarily withholds updates and monitors potential shifts in data distribution in subsequent iterations. This method allows CAdam to distinguish between the true distributional shifts and mere noise, and adapt more quickly to new data distributions. Our experiments with both synthetic and real-world datasets demonstrate that CAdam surpasses other well-known optimizers, including the original Adam, in efficiency and noise robustness. Furthermore, in large-scale A/B testing within a live recommendation system, CAdam significantly enhances model performance compared to Adam, leading to substantial increases in the system's gross merchandise volume (GMV).
Dynamic Causal Disentanglement Model for Dialogue Emotion Detection
Su, Yuting, Wei, Yichen, Nie, Weizhi, Zhao, Sicheng, Liu, Anan
Emotion detection is a critical technology extensively employed in diverse fields. While the incorporation of commonsense knowledge has proven beneficial for existing emotion detection methods, dialogue-based emotion detection encounters numerous difficulties and challenges due to human agency and the variability of dialogue content.In dialogues, human emotions tend to accumulate in bursts. However, they are often implicitly expressed. This implies that many genuine emotions remain concealed within a plethora of unrelated words and dialogues.In this paper, we propose a Dynamic Causal Disentanglement Model based on hidden variable separation, which is founded on the separation of hidden variables. This model effectively decomposes the content of dialogues and investigates the temporal accumulation of emotions, thereby enabling more precise emotion recognition. First, we introduce a novel Causal Directed Acyclic Graph (DAG) to establish the correlation between hidden emotional information and other observed elements. Subsequently, our approach utilizes pre-extracted personal attributes and utterance topics as guiding factors for the distribution of hidden variables, aiming to separate irrelevant ones. Specifically, we propose a dynamic temporal disentanglement model to infer the propagation of utterances and hidden variables, enabling the accumulation of emotion-related information throughout the conversation. To guide this disentanglement process, we leverage the ChatGPT-4.0 and LSTM networks to extract utterance topics and personal attributes as observed information.Finally, we test our approach on two popular datasets in dialogue emotion detection and relevant experimental results verified the model's superiority.
Reinforcement Learning Based Multi-modal Feature Fusion Network for Novel Class Discovery
Li, Qiang, Ma, Qiuyang, Nie, Weizhi, Liu, Anan
With the development of deep learning techniques, supervised learning has achieved performances surpassing those of humans. Researchers have designed numerous corresponding models for different data modalities, achieving excellent results in supervised tasks. However, with the exponential increase of data in multiple fields, the recognition and classification of unlabeled data have gradually become a hot topic. In this paper, we employed a Reinforcement Learning framework to simulate the cognitive processes of humans for effectively addressing novel class discovery in the Open-set domain. We deployed a Member-to-Leader Multi-Agent framework to extract and fuse features from multi-modal information, aiming to acquire a more comprehensive understanding of the feature space. Furthermore, this approach facilitated the incorporation of self-supervised learning to enhance model training. We employed a clustering method with varying constraint conditions, ranging from strict to loose, allowing for the generation of dependable labels for a subset of unlabeled data during the training phase. This iterative process is similar to human exploratory learning of unknown data. These mechanisms collectively update the network parameters based on rewards received from environmental feedback. This process enables effective control over the extent of exploration learning, ensuring the accuracy of learning in unknown data categories. We demonstrate the performance of our approach in both the 3D and 2D domains by employing the OS-MN40, OS-MN40-Miss, and Cifar10 datasets. Our approach achieves competitive competitive results.