Liu, Aishan
Lie Detector: Unified Backdoor Detection via Cross-Examination Framework
Wang, Xuan, Liang, Siyuan, Liao, Dongping, Fang, Han, Liu, Aishan, Cao, Xiaochun, Lu, Yu-liang, Chang, Ee-Chien, Gao, Xitong
Institutions with limited data and computing resources often outsource model training to third-party providers in a semi-honest setting, assuming adherence to prescribed training protocols with pre-defined learning paradigm (e.g., supervised or semi-supervised learning). However, this practice can introduce severe security risks, as adversaries may poison the training data to embed backdoors into the resulting model. Existing detection approaches predominantly rely on statistical analyses, which often fail to maintain universally accurate detection accuracy across different learning paradigms. To address this challenge, we propose a unified backdoor detection framework in the semi-honest setting that exploits cross-examination of model inconsistencies between two independent service providers. Specifically, we integrate central kernel alignment to enable robust feature similarity measurements across different model architectures and learning paradigms, thereby facilitating precise recovery and identification of backdoor triggers. We further introduce backdoor fine-tuning sensitivity analysis to distinguish backdoor triggers from adversarial perturbations, substantially reducing false positives. Extensive experiments demonstrate that our method achieves superior detection performance, improving accuracy by 5.4%, 1.6%, and 11.9% over SoTA baselines across supervised, semi-supervised, and autoregressive learning tasks, respectively. Notably, it is the first to effectively detect backdoors in multimodal large language models, further highlighting its broad applicability and advancing secure deep learning.
Towards Understanding the Safety Boundaries of DeepSeek Models: Evaluation and Findings
Ying, Zonghao, Zheng, Guangyi, Huang, Yongxin, Zhang, Deyue, Zhang, Wenxin, Zou, Quanchen, Liu, Aishan, Liu, Xianglong, Tao, Dacheng
This study presents the first comprehensive safety evaluation of the DeepSeek models, focusing on evaluating the safety risks associated with their generated content. Our evaluation encompasses DeepSeek's latest generation of large language models, multimodal large language models, and text-to-image models, systematically examining their performance regarding unsafe content generation. Notably, we developed a bilingual (Chinese-English) safety evaluation dataset tailored to Chinese sociocultural contexts, enabling a more thorough evaluation of the safety capabilities of Chinese-developed models. Experimental results indicate that despite their strong general capabilities, DeepSeek models exhibit significant safety vulnerabilities across multiple risk dimensions, including algorithmic discrimination and sexual content. These findings provide crucial insights for understanding and improving the safety of large foundation models. With the rapid advancement of artificial intelligence technology, large models such as the DeepSeek series have demonstrated remarkable capabilities across multiple domains Abraham (2025); Faray de Paiva et al. (2025); Mikhail et al. (2025). These models trained on vast datasets understand and generate diverse content forms, transformatively impacting multiple industries Liu et al. (2023a; 2020a;b). Currently, the community has established multiple evaluation frameworks to test the safety performance of mainstream large models Yuan et al. (2024a;b); Rรถttger et al. (2024); Tang et al. (2021); Liu et al. (2023c); Guo et al. (2023). However, these evaluation standards lack consideration for China's national conditions and cultural background.
Adversarial Training for Multimodal Large Language Models against Jailbreak Attacks
Lu, Liming, Pang, Shuchao, Liang, Siyuan, Zhu, Haotian, Zeng, Xiyu, Liu, Aishan, Liu, Yunhuai, Zhou, Yongbin
Multimodal large language models (MLLMs) have made remarkable strides in cross-modal comprehension and generation tasks. However, they remain vulnerable to jailbreak attacks, where crafted perturbations bypass security guardrails and elicit harmful outputs. In this paper, we present the first adversarial training (AT) paradigm tailored to defend against jailbreak attacks during the MLLM training phase. Extending traditional AT to this domain poses two critical challenges: efficiently tuning massive parameters and ensuring robustness against attacks across multiple modalities. To address these challenges, we introduce Projection Layer Against Adversarial Training (ProEAT), an end-to-end AT framework. ProEAT incorporates a projector-based adversarial training architecture that efficiently handles large-scale parameters while maintaining computational feasibility by focusing adversarial training on a lightweight projector layer instead of the entire model; additionally, we design a dynamic weight adjustment mechanism that optimizes the loss function's weight allocation based on task demands, streamlining the tuning process. To enhance defense performance, we propose a joint optimization strategy across visual and textual modalities, ensuring robust resistance to jailbreak attacks originating from either modality. Extensive experiments conducted on five major jailbreak attack methods across three mainstream MLLMs demonstrate the effectiveness of our approach. ProEAT achieves state-of-the-art defense performance, outperforming existing baselines by an average margin of +34% across text and image modalities, while incurring only a 1% reduction in clean accuracy. Furthermore, evaluations on real-world embodied intelligent systems highlight the practical applicability of our framework, paving the way for the development of more secure and reliable multimodal systems.
ELBA-Bench: An Efficient Learning Backdoor Attacks Benchmark for Large Language Models
Liu, Xuxu, Liang, Siyuan, Han, Mengya, Luo, Yong, Liu, Aishan, Cai, Xiantao, He, Zheng, Tao, Dacheng
Generative large language models are crucial in natural language processing, but they are vulnerable to backdoor attacks, where subtle triggers compromise their behavior. Although backdoor attacks against LLMs are constantly emerging, existing benchmarks remain limited in terms of sufficient coverage of attack, metric system integrity, backdoor attack alignment. And existing pre-trained backdoor attacks are idealized in practice due to resource access constraints. Therefore we establish $\textit{ELBA-Bench}$, a comprehensive and unified framework that allows attackers to inject backdoor through parameter efficient fine-tuning ($\textit{e.g.,}$ LoRA) or without fine-tuning techniques ($\textit{e.g.,}$ In-context-learning). $\textit{ELBA-Bench}$ provides over 1300 experiments encompassing the implementations of 12 attack methods, 18 datasets, and 12 LLMs. Extensive experiments provide new invaluable findings into the strengths and limitations of various attack strategies. For instance, PEFT attack consistently outperform without fine-tuning approaches in classification tasks while showing strong cross-dataset generalization with optimized triggers boosting robustness; Task-relevant backdoor optimization techniques or attack prompts along with clean and adversarial demonstrations can enhance backdoor attack success while preserving model performance on clean samples. Additionally, we introduce a universal toolbox designed for standardized backdoor attack research, with the goal of propelling further progress in this vital area.
Reasoning-Augmented Conversation for Multi-Turn Jailbreak Attacks on Large Language Models
Ying, Zonghao, Zhang, Deyue, Jing, Zonglei, Xiao, Yisong, Zou, Quanchen, Liu, Aishan, Liang, Siyuan, Zhang, Xiangzheng, Liu, Xianglong, Tao, Dacheng
Multi-turn jailbreak attacks simulate real-world human interactions by engaging large language models (LLMs) in iterative dialogues, exposing critical safety vulnerabilities. However, existing methods often struggle to balance semantic coherence with attack effectiveness, resulting in either benign semantic drift or ineffective detection evasion. To address this challenge, we propose Reasoning-Augmented Conversation, a novel multi-turn jailbreak framework that reformulates harmful queries into benign reasoning tasks and leverages LLMs' strong reasoning capabilities to compromise safety alignment. Specifically, we introduce an attack state machine framework to systematically model problem translation and iterative reasoning, ensuring coherent query generation across multiple turns. Building on this framework, we design gain-guided exploration, self-play, and rejection feedback modules to preserve attack semantics, enhance effectiveness, and sustain reasoning-driven attack progression. Extensive experiments on multiple LLMs demonstrate that RACE achieves state-of-the-art attack effectiveness in complex conversational scenarios, with attack success rates (ASRs) increasing by up to 96%. Notably, our approach achieves ASRs of 82% and 92% against leading commercial models, OpenAI o1 and DeepSeek R1, underscoring its potency. We release our code at https://github.com/NY1024/RACE to facilitate further research in this critical domain.
Black-Box Adversarial Attack on Vision Language Models for Autonomous Driving
Wang, Lu, Zhang, Tianyuan, Qu, Yang, Liang, Siyuan, Chen, Yuwei, Liu, Aishan, Liu, Xianglong, Tao, Dacheng
Vision-language models (VLMs) have significantly advanced autonomous driving (AD) by enhancing reasoning capabilities; however, these models remain highly susceptible to adversarial attacks. While existing research has explored white-box attacks to some extent, the more practical and challenging black-box scenarios remain largely underexplored due to their inherent difficulty. In this paper, we take the first step toward designing black-box adversarial attacks specifically targeting VLMs in AD. We identify two key challenges for achieving effective black-box attacks in this context: the effectiveness across driving reasoning chains in AD systems and the dynamic nature of driving scenarios. To address this, we propose Cascading Adversarial Disruption (CAD). It first introduces Decision Chain Disruption, which targets low-level reasoning breakdown by generating and injecting deceptive semantics, ensuring the perturbations remain effective across the entire decision-making chain. Building on this, we present Risky Scene Induction, which addresses dynamic adaptation by leveraging a surrogate VLM to understand and construct high-level risky scenarios that are likely to result in critical errors in the current driving contexts. Extensive experiments conducted on multiple AD VLMs and benchmarks demonstrate that CAD achieves state-of-the-art attack effectiveness, significantly outperforming existing methods (+13.43% on average). Moreover, we validate its practical applicability through real-world attacks on AD vehicles powered by VLMs, where the route completion rate drops by 61.11% and the vehicle crashes directly into the obstacle vehicle with adversarial patches. Finally, we release CADA dataset, comprising 18,808 adversarial visual-question-answer pairs, to facilitate further evaluation and research in this critical domain. Our codes and dataset will be available after paper's acceptance.
Red Pill and Blue Pill: Controllable Website Fingerprinting Defense via Dynamic Backdoor Learning
Liang, Siyuan, Gong, Jiajun, Fang, Tianmeng, Liu, Aishan, Wang, Tao, Liu, Xianglong, Cao, Xiaochun, Tao, Dacheng, Ee-Chien, Chang
Website fingerprint (WF) attacks, which covertly monitor user communications to identify the web pages they visit, pose a serious threat to user privacy. Existing WF defenses attempt to reduce the attacker's accuracy by disrupting unique traffic patterns; however, they often suffer from the trade-off between overhead and effectiveness, resulting in less usefulness in practice. To overcome this limitation, we introduce Controllable Website Fingerprint Defense (CWFD), a novel defense perspective based on backdoor learning. CWFD exploits backdoor vulnerabilities in neural networks to directly control the attacker's model by designing trigger patterns based on network traffic. Specifically, CWFD injects only incoming packets on the server side into the target web page's traffic, keeping overhead low while effectively poisoning the attacker's model during training. During inference, the defender can influence the attacker's model through a 'red pill, blue pill' choice: traces with the trigger (red pill) lead to misclassification as the target web page, while normal traces (blue pill) are classified correctly, achieving directed control over the defense outcome. We use the Fast Levenshtein-like distance as the optimization objective to compute trigger patterns that can be effectively associated with our target page. Experiments show that CWFD significantly reduces RF's accuracy from 99% to 6% with 74% data overhead. In comparison, FRONT reduces accuracy to only 97% at similar overhead, while Palette achieves 32% accuracy with 48% more overhead. We further validate the practicality of our method in a real Tor network environment.
PTSBench: A Comprehensive Post-Training Sparsity Benchmark Towards Algorithms and Models
Wnag, Zining, Guo, Jinyang, Gong, Ruihao, Yong, Yang, Liu, Aishan, Huang, Yushi, Liu, Jiaheng, Liu, Xianglong
With the increased attention to model efficiency, post-training sparsity (PTS) has become more and more prevalent because of its effectiveness and efficiency. However, there remain questions on better practice of PTS algorithms and the sparsification ability of models, which hinders the further development of this area. Therefore, a benchmark to comprehensively investigate the issues above is urgently needed. In this paper, we propose the first comprehensive post-training sparsity benchmark called PTSBench towards algorithms and models. We benchmark 10+ PTS general-pluggable fine-grained techniques on 3 typical tasks using over 40 off-the-shelf model architectures. Through extensive experiments and analyses, we obtain valuable conclusions and provide several insights from both algorithms and model aspects. Our PTSBench can provide (1) new observations for a better understanding of the PTS algorithms, (2) in-depth and comprehensive evaluations for the sparsification ability of models, and (3) a well-structured and easy-integrate open-source framework. We hope this work will provide illuminating conclusions and advice for future studies of post-training sparsity methods and sparsification-friendly model design. The code for our PTSBench is released at \href{https://github.com/ModelTC/msbench}{https://github.com/ModelTC/msbench}.
TrojanRobot: Backdoor Attacks Against LLM-based Embodied Robots in the Physical World
Wang, Xianlong, Pan, Hewen, Zhang, Hangtao, Li, Minghui, Hu, Shengshan, Zhou, Ziqi, Xue, Lulu, Guo, Peijin, Wang, Yichen, Wan, Wei, Liu, Aishan, Zhang, Leo Yu
Robotic manipulation refers to the autonomous handling and interaction of robots with objects using advanced techniques in robotics and artificial intelligence. The advent of powerful tools such as large language models (LLMs) and large vision-language models (LVLMs) has significantly enhanced the capabilities of these robots in environmental perception and decision-making. However, the introduction of these intelligent agents has led to security threats such as jailbreak attacks and adversarial attacks. In this research, we take a further step by proposing a backdoor attack specifically targeting robotic manipulation and, for the first time, implementing backdoor attack in the physical world. By embedding a backdoor visual language model into the visual perception module within the robotic system, we successfully mislead the robotic arm's operation in the physical world, given the presence of common items as triggers. Experimental evaluations in the physical world demonstrate the effectiveness of the proposed backdoor attack.
CopyrightShield: Spatial Similarity Guided Backdoor Defense against Copyright Infringement in Diffusion Models
Guo, Zhixiang, Liang, Siyuan, Liu, Aishan, Tao, Dacheng
The diffusion model has gained significant attention due to its remarkable data generation ability in fields such as image synthesis. However, its strong memorization and replication abilities with respect to the training data also make it a prime target for copyright infringement attacks. This paper provides an in-depth analysis of the spatial similarity of replication in diffusion model and leverages this key characteristic to design a method for detecting poisoning data. By employing a joint assessment of spatial-level and feature-level information from the detected segments, we effectively identify covertly dispersed poisoned samples. Building upon detected poisoning data, we propose a novel defense method specifically targeting copyright infringement attacks by introducing a protection constraint term into the loss function to mitigate the impact of poisoning. Extensive experimental results demonstrate that our approach achieves an average F1 score of 0.709 in detecting copyright infringement backdoors, resulting in an average increase of 68.1% in First-Attack Epoch (FAE) and an average decrease of 51.4% in Copyright Infringement Rate (CIR) of the poisoned model, effectively defending against copyright infringement. Additionally, we introduce the concept of copyright feature inversion, which aids in determining copyright responsibility and expands the application scenarios of defense strategies.