Little, James J.
Semantically Enhanced Global Reasoning for Semantic Segmentation
Hossain, Mir Rayat Imtiaz, Sigal, Leonid, Little, James J.
Recent advances in pixel-level tasks (e.g., segmentation) illustrate the benefit of long-range interactions between aggregated region-based representations that can enhance local features. However, such pixel-to-region associations and the resulting representation, which often take the form of attention, cannot model the underlying semantic structure of the scene (e.g., individual objects and, by extension, their interactions). In this work, we take a step toward addressing this limitation. Specifically, we propose an architecture where we learn to project image features into latent region representations and perform global reasoning across them, using a transformer, to produce contextualized and scene-consistent representations that are then fused with original pixel-level features. Our design enables the latent regions to represent semantically meaningful concepts, by ensuring that activated regions are spatially disjoint and unions of such regions correspond to connected object segments. The resulting semantic global reasoning (SGR) is end-to-end trainable and can be combined with any semantic segmentation framework and backbone. Combining SGR with DeepLabV3 results in a semantic segmentation performance that is competitive to the state-of-the-art, while resulting in more semantically interpretable and diverse region representations, which we show can effectively transfer to detection and instance segmentation. Further, we propose a new metric that allows us to measure the semantics of representations at both the object class and instance level.
Does Your Model Know the Digit 6 Is Not a Cat? A Less Biased Evaluation of "Outlier" Detectors
Shafaei, Alireza, Schmidt, Mark, Little, James J.
In the real world, a learning system could receive an input that looks nothing like anything it has seen during training, and this can lead to unpredictable behaviour. We thus need to know whether any given input belongs to the population distribution of the training data to prevent unpredictable behaviour in deployed systems. A recent surge of interest on this problem has led to the development of sophisticated techniques in the deep learning literature. However, due to the absence of a standardized problem formulation or an exhaustive evaluation, it is not evident if we can rely on these methods in practice. What makes this problem different from a typical supervised learning setting is that we cannot model the diversity of out-of-distribution samples in practice. The distribution of outliers used in training may not be the same as the distribution of outliers encountered in the application. Therefore, classical approaches that learn inliers vs. outliers with only two datasets can yield optimistic results. We introduce OD-test, a three-dataset evaluation scheme as a practical and more reliable strategy to assess progress on this problem. The OD-test benchmark provides a straightforward means of comparison for methods that address the out-of-distribution sample detection problem. We present an exhaustive evaluation of a broad set of methods from related areas on image classification tasks. Furthermore, we show that for realistic applications of high-dimensional images, the existing methods have low accuracy. Our analysis reveals areas of strength and weakness of each method.
Exploiting Points and Lines in Regression Forests for RGB-D Camera Relocalization
Meng, Lili, Tung, Frederick, Little, James J., Valentin, Julien, de Silva, Clarence
Camera relocalization plays a vital role in many robotics and computer vision tasks, such as global localization, recovery from tracking failure and loop closure detection. Recent random forests based methods exploit randomly sampled pixel comparison features to predict 3D world locations for 2D image locations to guide the camera pose optimization. However, these image features are only sampled randomly in the images, without considering the spatial structures or geometric information, leading to large errors or failure cases with the existence of poorly textured areas or in motion blur. Line segment features are more robust in these environments. In this work, we propose to jointly exploit points and lines within the framework of uncertainty driven regression forests. The proposed approach is thoroughly evaluated on three publicly available datasets against several strong state-of-the-art baselines in terms of several different error metrics. Experimental results prove the efficacy of our method, showing superior or on-par state-of-the-art performance.
An Intelligent Powered Wheelchair for Users with Dementia: Case Studies with NOAH (Navigation and Obstacle Avoidance Help)
Viswanathan, Pooja (University of British Columbia) | Little, James J. (University of British Columbia) | Mackworth, Alan K. (University of British Columbia) | Mihailidis, Alex (University of Toronto)
Intelligent wheelchairs can help increase independent mobility for elderly residents with cognitive impairment, who are currently excluded from the use of powered wheelchairs. This paper presents three case studies, demonstrating the efficacy of the NOAH (Navigation and Obstacle Avoidance Help) system. The findings reported can be used to refine our understanding of user needs and help identify methods to improve the quality of life of the intended users.