Goto

Collaborating Authors

 Litake, Onkar


IndiText Boost: Text Augmentation for Low Resource India Languages

arXiv.org Artificial Intelligence

Text Augmentation is an important task for low-resource languages. It helps deal with the problem of data scarcity. A data augmentation strategy is used to deal with the problem of data scarcity. Through the years, much work has been done on data augmentation for the English language. In contrast, very less work has been done on Indian languages. This is contrary to the fact that data augmentation is used to deal with data scarcity. In this work, we focus on implementing techniques like Easy Data Augmentation, Back Translation, Paraphrasing, Text Generation using LLMs, and Text Expansion using LLMs for text classification on different languages. We focus on 6 Indian languages namely: Sindhi, Marathi, Hindi, Gujarati, Telugu, and Sanskrit. According to our knowledge, no such work exists for text augmentation on Indian languages. We carry out binary as well as multi-class text classification to make our results more comparable. We get surprising results as basic data augmentation techniques surpass LLMs.


Breaking Language Barriers: A Question Answering Dataset for Hindi and Marathi

arXiv.org Artificial Intelligence

The recent advances in deep-learning have led to the development of highly sophisticated systems with an unquenchable appetite for data. On the other hand, building good deep-learning models for low-resource languages remains a challenging task. This paper focuses on developing a Question Answering dataset for two such languages- Hindi and Marathi. Despite Hindi being the 3rd most spoken language worldwide, with 345 million speakers, and Marathi being the 11th most spoken language globally, with 83.2 million speakers, both languages face limited resources for building efficient Question Answering systems. To tackle the challenge of data scarcity, we have developed a novel approach for translating the SQuAD 2.0 dataset into Hindi and Marathi. We release the largest Question-Answering dataset available for these languages, with each dataset containing 28,000 samples. We evaluate the dataset on various architectures and release the best-performing models for both Hindi and Marathi, which will facilitate further research in these languages. Leveraging similarity tools, our method holds the potential to create datasets in diverse languages, thereby enhancing the understanding of natural language across varied linguistic contexts. Our fine-tuned models, code, and dataset will be made publicly available.


Enhancing Low Resource NER Using Assisting Language And Transfer Learning

arXiv.org Artificial Intelligence

Named Entity Recognition (NER) is a fundamental task in NLP that is used to locate the key information in text and is primarily applied in conversational and search systems. In commercial applications, NER or comparable slot-filling methods have been widely deployed for popular languages. NER is used in applications such as human resources, customer service, search engines, content classification, and academia. In this paper, we draw focus on identifying name entities for low-resource Indian languages that are closely related, like Hindi and Marathi. We use various adaptations of BERT such as baseBERT, AlBERT, and RoBERTa to train a supervised NER model. We also compare multilingual models with monolingual models and establish a baseline. In this work, we show the assisting capabilities of the Hindi and Marathi languages for the NER task. We show that models trained using multiple languages perform better than a single language. However, we also observe that blind mixing of all datasets doesn't necessarily provide improvements and data selection methods may be required.


Mono vs Multilingual BERT: A Case Study in Hindi and Marathi Named Entity Recognition

arXiv.org Artificial Intelligence

Named entity recognition (NER) is the process of recognising and classifying important information (entities) in text. Proper nouns, such as a person's name, an organization's name, or a location's name, are examples of entities. The NER is one of the important modules in applications like human resources, customer support, search engines, content classification, and academia. In this work, we consider NER for low-resource Indian languages like Hindi and Marathi. The transformer-based models have been widely used for NER tasks. We consider different variations of BERT like base-BERT, RoBERTa, and AlBERT and benchmark them on publicly available Hindi and Marathi NER datasets. We provide an exhaustive comparison of different monolingual and multilingual transformer-based models and establish simple baselines currently missing in the literature. We show that the monolingual MahaRoBERTa model performs the best for Marathi NER whereas the multilingual XLM-RoBERTa performs the best for Hindi NER. We also perform cross-language evaluation and present mixed observations.


Investigating Transfer Learning Capabilities of Vision Transformers and CNNs by Fine-Tuning a Single Trainable Block

arXiv.org Artificial Intelligence

In recent developments in the field of Computer Vision, a rise is seen in the use of transformer-based architectures. They are surpassing the state-of-the-art set by CNN architectures in accuracy but on the other hand, they are computationally very expensive to train from scratch. As these models are quite recent in the Computer Vision field, there is a need to study it's transfer learning capabilities and compare it with CNNs so that we can understand which architecture is better when applied to real world problems with small data. In this work, we follow a simple yet restrictive method for fine-tuning both CNN and Transformer models pretrained on ImageNet1K on CIFAR-10 and compare them with each other. We only unfreeze the last transformer/encoder or last convolutional block of a model and freeze all the layers before it while adding a simple MLP at the end for classification. This simple modification lets us use the raw learned weights of both these neural networks. From our experiments, we find out that transformers-based architectures not only achieve higher accuracy than CNNs but some transformers even achieve this feat with around 4 times lesser number of parameters.