Linkmann, Moritz
Identifying regions of importance in wall-bounded turbulence through explainable deep learning
Cremades, Andres, Hoyas, Sergio, Deshpande, Rahul, Quintero, Pedro, Lellep, Martin, Lee, Will Junghoon, Monty, Jason, Hutchins, Nicholas, Linkmann, Moritz, Marusic, Ivan, Vinuesa, Ricardo
Despite its great scientific and technological importance, wall-bounded turbulence is an unresolved problem in classical physics that requires new perspectives to be tackled. One of the key strategies has been to study interactions among the energy-containing coherent structures in the flow. Such interactions are explored in this study for the first time using an explainable deep-learning method. The instantaneous velocity field obtained from a turbulent channel flow simulation is used to predict the velocity field in time through a U-net architecture. Based on the predicted flow, we assess the importance of each structure for this prediction using the game-theoretic algorithm of SHapley Additive exPlanations (SHAP). This work provides results in agreement with previous observations in the literature and extends them by revealing that the most important structures in the flow are not necessarily the ones with the highest contribution to the Reynolds shear stress. We also apply the method to an experimental database, where we can identify completely new structures based on their importance score. This framework has the potential to shed light on numerous fundamental phenomena of wall-bounded turbulence, including novel strategies for flow control.
Using Machine Learning to predict extreme events in the H\'enon map
Lellep, Martin, Prexl, Jonathan, Linkmann, Moritz, Eckhardt, Bruno
Machine Learning (ML) inspired algorithms provide a flexible set of tools for analyzing and forecasting chaotic dynamical systems. We here analyze the performance of one algorithm for the prediction of extreme events in the two-dimensional H\'enon map at the classical parameters. The task is to determine whether a trajectory will exceed a threshold after a set number of time steps into the future. This task has a geometric interpretation within the dynamics of the H\'enon map, which we use to gauge the performance of the neural networks that are used in this work. We analyze the dependence of the success rate of the ML models on the prediction time $T$ , the number of training samples $N_T$ and the size of the network $N_p$. We observe that in order to maintain a certain accuracy, $N_T \propto exp(2 h T)$ and $N_p \propto exp(hT)$, where $h$ is the topological entropy. Similar relations between the intrinsic chaotic properties of the dynamics and ML parameters might be observable in other systems as well.