Goto

Collaborating Authors

 Liniger, Alexander


Spectral Tensor Train Parameterization of Deep Learning Layers

arXiv.org Machine Learning

We study low-rank parameterizations of weight matrices with embedded spectral properties in the Deep Learning context. The low-rank property leads to parameter efficiency and permits taking computational shortcuts when computing mappings. Spectral properties are often subject to constraints in optimization problems, leading to better models and stability of optimization. We start by looking at the compact SVD parameterization of weight matrices and identifying redundancy sources in the parameterization. We further apply the Tensor Train (TT) decomposition to the compact SVD components, and propose a non-redundant differentiable parameterization of fixed TT-rank tensor manifolds, termed the Spectral Tensor Train Parameterization (STTP). We demonstrate the effects of neural network compression in the image classification setting and both compression and improved training stability in the generative adversarial training setting.


Understanding Bird's-Eye View Semantic HD-Maps Using an Onboard Monocular Camera

arXiv.org Artificial Intelligence

Autonomous navigation requires scene understanding of the action-space to move or anticipate events. For planner agents moving on the ground plane, such as autonomous vehicles, this translates to scene understanding in the bird's-eye view. However, the onboard cameras of autonomous cars are customarily mounted horizontally for a better view of the surrounding. In this work, we study scene understanding in the form of online estimation of semantic bird's-eye-view HD-maps using the video input from a single onboard camera. We study three key aspects of this task, image-level understanding, BEV level understanding, and the aggregation of temporal information. Based on these three pillars we propose a novel architecture that combines these three aspects. In our extensive experiments, we demonstrate that the considered aspects are complementary to each other for HD-map understanding. Furthermore, the proposed architecture significantly surpasses the current state-of-the-art.


Learning from Simulation, Racing in Reality

arXiv.org Artificial Intelligence

We present a reinforcement learning-based solution to autonomously race on a miniature race car platform. We show that a policy that is trained purely in simulation using a relatively simple vehicle model, including model randomization, can be successfully transferred to the real robotic setup. We achieve this by using novel policy output regularization approach and a lifted action space which enables smooth actions but still aggressive race car driving. We show that this regularized policy does outperform the Soft Actor Critic (SAC) baseline method, both in simulation and on the real car, but it is still outperformed by a Model Predictive Controller (MPC) state of the art method. The refinement of the policy with three hours of real-world interaction data allows the reinforcement learning policy to achieve lap times similar to the MPC controller while reducing track constraint violations by 50%.


Learning Accurate and Human-Like Driving using Semantic Maps and Attention

arXiv.org Artificial Intelligence

This paper investigates how end-to-end driving models can be improved to drive more accurately and human-like. To tackle the first issue we exploit semantic and visual maps from HERE Technologies and augment the existing Drive360 dataset with such. The maps are used in an attention mechanism that promotes segmentation confidence masks, thus focusing the network on semantic classes in the image that are important for the current driving situation. Human-like driving is achieved using adversarial learning, by not only minimizing the imitation loss with respect to the human driver but by further defining a discriminator, that forces the driving model to produce action sequences that are human-like. Our models are trained and evaluated on the Drive360 + HERE dataset, which features 60 hours and 3000 km of real-world driving data. Extensive experiments show that our driving models are more accurate and behave more human-like than previous methods.


Competitive Policy Optimization

arXiv.org Machine Learning

A core challenge in policy optimization in competitive Markov decision processes is the design of efficient optimization methods with desirable convergence and stability properties. To tackle this, we propose competitive policy optimization (CoPO), a novel policy gradient approach that exploits the game-theoretic nature of competitive games to derive policy updates. Motivated by the competitive gradient optimization method, we derive a bilinear approximation of the game objective. In contrast, off-the-shelf policy gradient methods utilize only linear approximations, and hence do not capture interactions among the players. We instantiate CoPO in two ways:(i) competitive policy gradient, and (ii) trust-region competitive policy optimization. We theoretically study these methods, and empirically investigate their behavior on a set of comprehensive, yet challenging, competitive games. We observe that they provide stable optimization, convergence to sophisticated strategies, and higher scores when played against baseline policy gradient methods.