Ling, Hefei
Detecting Adversarial Data via Perturbation Forgery
Wang, Qian, Li, Chen, Luo, Yuchen, Ling, Hefei, Li, Ping, Chen, Jiazhong, Huang, Shijuan, Yu, Ning
As a defense strategy against adversarial attacks, adversarial detection aims to identify and filter out adversarial data from the data flow based on discrepancies in distribution and noise patterns between natural and adversarial data. Although previous detection methods achieve high performance in detecting gradient-based adversarial attacks, new attacks based on generative models with imbalanced and anisotropic noise patterns evade detection. Even worse, existing techniques either necessitate access to attack data before deploying a defense or incur a significant time cost for inference, rendering them impractical for defending against newly emerging attacks that are unseen by defenders. In this paper, we explore the proximity relationship between adversarial noise distributions and demonstrate the existence of an open covering for them. By learning to distinguish this open covering from the distribution of natural data, we can develop a detector with strong generalization capabilities against all types of adversarial attacks. Based on this insight, we heuristically propose Perturbation Forgery, which includes noise distribution perturbation, sparse mask generation, and pseudo-adversarial data production, to train an adversarial detector capable of detecting unseen gradient-based, generative-model-based, and physical adversarial attacks, while remaining agnostic to any specific models. Comprehensive experiments conducted on multiple general and facial datasets, with a wide spectrum of attacks, validate the strong generalization of our method.
Continual Adversarial Defense
Wang, Qian, Liu, Yaoyao, Ling, Hefei, Li, Yingwei, Liu, Qihao, Li, Ping, Chen, Jiazhong, Yuille, Alan, Yu, Ning
In response to the rapidly evolving nature of adversarial attacks on a monthly basis, numerous defenses have been proposed to generalize against as many known attacks as possible. However, designing a defense method that can generalize to all types of attacks, including unseen ones, is not realistic because the environment in which defense systems operate is dynamic and comprises various unique attacks used by many attackers. The defense system needs to upgrade itself by utilizing few-shot defense feedback and efficient memory. Therefore, we propose the first continual adversarial defense (CAD) framework that adapts to any attacks in a dynamic scenario, where various attacks emerge stage by stage. In practice, CAD is modeled under four principles: (1) continual adaptation to new attacks without catastrophic forgetting, (2) few-shot adaptation, (3) memory-efficient adaptation, and (4) high accuracy on both clean and adversarial images. We leverage cutting-edge continual learning, few-shot learning, and ensemble learning techniques to qualify the principles. Experiments conducted on CIFAR-10 and ImageNet-100 validate the effectiveness of our approach against multiple stages of 10 modern adversarial attacks and significant improvements over 10 baseline methods. In particular, CAD is capable of quickly adapting with minimal feedback and a low cost of defense failure, while maintaining good performance against old attacks. Our research sheds light on a brand-new paradigm for continual defense adaptation against dynamic and evolving attacks.
Detecting Adversarial Faces Using Only Real Face Self-Perturbations
Wang, Qian, Xian, Yongqin, Ling, Hefei, Zhang, Jinyuan, Lin, Xiaorui, Li, Ping, Chen, Jiazhong, Yu, Ning
Adversarial attacks aim to disturb the functionality of a target system by adding specific noise to the input samples, bringing potential threats to security and robustness when applied to facial recognition systems. Although existing defense techniques achieve high accuracy in detecting some specific adversarial faces (adv-faces), new attack methods especially GAN-based attacks with completely different noise patterns circumvent them and reach a higher attack success rate. Even worse, existing techniques require attack data before implementing the defense, making it impractical to defend newly emerging attacks that are unseen to defenders. In this paper, we investigate the intrinsic generality of adv-faces and propose to generate pseudo adv-faces by perturbing real faces with three heuristically designed noise patterns. We are the first to train an adv-face detector using only real faces and their self-perturbations, agnostic to victim facial recognition systems, and agnostic to unseen attacks. By regarding adv-faces as out-of-distribution data, we then naturally introduce a novel cascaded system for adv-face detection, which consists of training data self-perturbations, decision boundary regularization, and a max-pooling-based binary classifier focusing on abnormal local color aberrations. Experiments conducted on LFW and CelebA-HQ datasets with eight gradient-based and two GAN-based attacks validate that our method generalizes to a variety of unseen adversarial attacks.
Hands-on Guidance for Distilling Object Detectors
Qin, Yangyang, Ling, Hefei, He, Zhenghai, Shi, Yuxuan, Wu, Lei
Knowledge distillation can lead to deploy-friendly networks against the plagued computational complexity problem, but previous methods neglect the feature hierarchy in detectors. Motivated by this, we propose a general framework for detection distillation. Our method, called Hands-on Guidance Distillation, distills the latent knowledge of all stage features for imposing more comprehensive supervision, and focuses on the essence simultaneously for promoting more intense knowledge absorption. Specifically, a series of novel mechanisms are designed elaborately, including correspondence establishment for consistency, hands-on imitation loss measure and re-weighted optimization from both micro and macro perspectives. We conduct extensive evaluations with different distillation configurations over VOC and COCO datasets, which show better performance on accuracy and speed trade-offs. Meanwhile, feasibility experiments on different structural networks further prove the robustness of our HGD.