Linares-Barranco, Alejandro
Towards spiking analog hardware implementation of a trajectory interpolation mechanism for smooth closed-loop control of a spiking robot arm
Casanueva-Morato, Daniel, Wu, Chenxi, Indiveri, Giacomo, Dominguez-Morales, Juan P., Linares-Barranco, Alejandro
Neuromorphic engineering aims to incorporate the computational principles found in animal brains, into modern technological systems. Following this approach, in this work we propose a closed-loop neuromorphic control system for an event-based robotic arm. The proposed system consists of a shifted Winner-Take-All spiking network for interpolating a reference trajectory and a spiking comparator network responsible for controlling the flow continuity of the trajectory, which is fed back to the actual position of the robot. The comparator model is based on a differential position comparison neural network, which governs the execution of the next trajectory points to close the control loop between both components of the system. To evaluate the system, we implemented and deployed the model on a mixed-signal analog-digital neuromorphic platform, the DYNAP-SE2, to facilitate integration and communication with the ED-Scorbot robotic arm platform. Experimental results on one joint of the robot validate the use of this architecture and pave the way for future neuro-inspired control of the entire robot.
Adaptive Robotic Arm Control with a Spiking Recurrent Neural Network on a Digital Accelerator
Linares-Barranco, Alejandro, Prono, Luciano, Lengenstein, Robert, Indiveri, Giacomo, Frenkel, Charlotte
With the rise of artificial intelligence, neural network simulations of biological neuron models are being explored to reduce the footprint of learning and inference in resource-constrained task scenarios. A mainstream type of such networks are spiking neural networks (SNNs) based on simplified Integrate and Fire models for which several hardware accelerators have emerged. Among them, the ReckOn chip was introduced as a recurrent SNN allowing for both online training and execution of tasks based on arbitrary sensory modalities, demonstrated for vision, audition, and navigation. As a fully digital and open-source chip, we adapted ReckOn to be implemented on a Xilinx Multiprocessor System on Chip system (MPSoC), facilitating its deployment in embedded systems and increasing the setup flexibility. We present an overview of the system, and a Python framework to use it on a Pynq ZU platform. We validate the architecture and implementation in the new scenario of robotic arm control, and show how the simulated accuracy is preserved with a peak performance of 3.8M events processed per second.
LIPSFUS: A neuromorphic dataset for audio-visual sensory fusion of lip reading
Rios-Navarro, Antonio, Piñero-Fuentes, Enrique, Canas-Moreno, Salvador, Javed, Aqib, Harkin, Jin, Linares-Barranco, Alejandro
This paper presents a sensory fusion neuromorphic dataset collected with precise temporal synchronization using a set of Address-Event-Representation sensors and tools. The target application is the lip reading of several keywords for different machine learning applications, such as digits, robotic commands, and auxiliary rich phonetic short words. The dataset is enlarged with a spiking version of an audio-visual lip reading dataset collected with frame-based cameras. LIPSFUS is publicly available and it has been validated with a deep learning architecture for audio and visual classification. It is intended for sensory fusion architectures based on both artificial and spiking neural network algorithms.