Lin, Yue
Verbalized Bayesian Persuasion
Li, Wenhao, Lin, Yue, Wang, Xiangfeng, Jin, Bo, Zha, Hongyuan, Wang, Baoxiang
Information design (ID) explores how a sender influence the optimal behavior of receivers to achieve specific objectives. While ID originates from everyday human communication, existing game-theoretic and machine learning methods often model information structures as numbers, which limits many applications to toy games. This work leverages LLMs and proposes a verbalized framework in Bayesian persuasion (BP), which extends classic BP to real-world games involving human dialogues for the first time. Specifically, we map the BP to a verbalized mediator-augmented extensive-form game, where LLMs instantiate the sender and receiver. To efficiently solve the verbalized game, we propose a generalized equilibrium-finding algorithm combining LLM and game solver. The algorithm is reinforced with techniques including verbalized commitment assumptions, verbalized obedience constraints, and information obfuscation. Numerical experiments in dialogue scenarios, such as recommendation letters, courtroom interactions, and law enforcement, validate that our framework can both reproduce theoretical results in classic BP and discover effective persuasion strategies in more complex natural language and multi-stage scenarios.
Effective Unsupervised Constrained Text Generation based on Perturbed Masking
Fu, Yingwen, Ou, Wenjie, Yu, Zhou, Lin, Yue
Unsupervised constrained text generation aims to generate text under a given set of constraints without any supervised data. Current state-of-the-art methods stochastically sample edit positions and actions, which may cause unnecessary search steps. In this paper, we propose PMCTG to improve effectiveness by searching for the best edit position and action in each step. Specifically, PMCTG extends perturbed masking technique to effectively search for the most incongruent token to edit. Then it introduces four multi-aspect scoring functions to select edit action to further reduce search difficulty. Since PMCTG does not require supervised data, it could be applied to different generation tasks. We show that under the unsupervised setting, PMCTG achieves new state-of-the-art results in two representative tasks, namely keywords-to-sentence generation and paraphrasing.
Harnessing LSTM for Nonlinear Ship Deck Motion Prediction in UAV Autonomous Landing amidst High Sea States
Yu, Feifan, Cong, Wenyuan, Chen, Xinmin, Lin, Yue, Wang, Jiqiang
Autonomous landing of UAVs in high sea states requires the UAV to land exclusively during the ship deck's "rest period," coinciding with minimal movement. Given this scenario, determining the ship's "rest period" based on its movement patterns becomes a fundamental prerequisite for addressing this challenge. This study employs the Long Short-Term Memory (LSTM) neural network to predict the ship's motion across three dimensions: longi-tudinal, transverse, and vertical waves. In the absence of actual ship data under high sea states, this paper employs a composite sine wave model to simulate ship deck motion. Through this approach, a highly accurate model is established, exhibiting promising outcomes within various stochastic sine wave combination models.
Information Design in Multi-Agent Reinforcement Learning
Lin, Yue, Li, Wenhao, Zha, Hongyuan, Wang, Baoxiang
Reinforcement learning (RL) is inspired by the way human infants and animals learn from the environment. The setting is somewhat idealized because, in actual tasks, other agents in the environment have their own goals and behave adaptively to the ego agent. To thrive in those environments, the agent needs to influence other agents so their actions become more helpful and less harmful. Research in computational economics distills two ways to influence others directly: by providing tangible goods (mechanism design) and by providing information (information design). This work investigates information design problems for a group of RL agents. The main challenges are two-fold. One is the information provided will immediately affect the transition of the agent trajectories, which introduces additional non-stationarity. The other is the information can be ignored, so the sender must provide information that the receiver is willing to respect. We formulate the Markov signaling game, and develop the notions of signaling gradient and the extended obedience constraints that address these challenges. Our algorithm is efficient on various mixed-motive tasks and provides further insights into computational economics. Our code is publicly available at https://github.com/YueLin301/InformationDesignMARL.
A Comprehensive Survey for Evaluation Methodologies of AI-Generated Music
Xiong, Zeyu, Wang, Weitao, Yu, Jing, Lin, Yue, Wang, Ziyan
In recent years, AI-generated music has made significant progress, with several models performing well in multimodal and complex musical genres and scenes. While objective metrics can be used to evaluate generative music, they often lack interpretability for musical evaluation. Therefore, researchers often resort to subjective user studies to assess the quality of the generated works, which can be resource-intensive and less reproducible than objective metrics. This study aims to comprehensively evaluate the subjective, objective, and combined methodologies for assessing AI-generated music, highlighting the advantages and disadvantages of each approach. Ultimately, this study provides a valuable reference for unifying generative AI in the field of music evaluation.
Let the Chart Spark: Embedding Semantic Context into Chart with Text-to-Image Generative Model
Xiao, Shishi, Huang, Suizi, Lin, Yue, Ye, Yilin, Zeng, Wei
Pictorial visualization seamlessly integrates data and semantic context into visual representation, conveying complex information in a manner that is both engaging and informative. Extensive studies have been devoted to developing authoring tools to simplify the creation of pictorial visualizations. However, mainstream works mostly follow a retrieving-and-editing pipeline that heavily relies on retrieved visual elements from a dedicated corpus, which often compromise the data integrity. Text-guided generation methods are emerging, but may have limited applicability due to its predefined recognized entities. In this work, we propose ChartSpark, a novel system that embeds semantic context into chart based on text-to-image generative model. ChartSpark generates pictorial visualizations conditioned on both semantic context conveyed in textual inputs and data information embedded in plain charts. The method is generic for both foreground and background pictorial generation, satisfying the design practices identified from an empirical research into existing pictorial visualizations. We further develop an interactive visual interface that integrates a text analyzer, editing module, and evaluation module to enable users to generate, modify, and assess pictorial visualizations. We experimentally demonstrate the usability of our tool, and conclude with a discussion of the potential of using text-to-image generative model combined with interactive interface for visualization design.
MIGA: A Unified Multi-task Generation Framework for Conversational Text-to-SQL
Fu, Yingwen, Ou, Wenjie, Yu, Zhou, Lin, Yue
Conversational text-to-SQL is designed to translate multi-turn natural language questions into their corresponding SQL queries. Most state-of-the-art conversational text- to-SQL methods are incompatible with generative pre-trained language models (PLMs), such as T5. In this paper, we present a two-stage unified MultI-task Generation frAmework (MIGA) that leverages PLMs' ability to tackle conversational text-to-SQL. In the pre-training stage, MIGA first decomposes the main task into several related sub-tasks and then unifies them into the same sequence-to-sequence (Seq2Seq) paradigm with task-specific natural language prompts to boost the main task from multi-task training. Later in the fine-tuning stage, we propose four SQL perturbations to alleviate the error propagation problem. MIGA tends to achieve state-of-the-art performance on two benchmarks (SparC and CoSQL). We also provide extensive analyses and discussions to shed light on some new perspectives for conversational text-to-SQL.
A Clarifying Question Selection System from NTES_ALONG in Convai3 Challenge
Ou, Wenjie, Lin, Yue
This paper presents the participation of NTES\_ALONG team for the ClariQ challenge at Search-oriented Conversational AI (SCAI) EMNLP workshop in 2020. The challenge asks for a complete conversational information retrieval system that can understanding and generating clarification questions. We propose a clarifying question selection system which consists of response understanding, candidate question recalling and clarifying question ranking. We fine-tune a RoBERTa model to understand user's responses and use an enhanced BM25 model to recall the candidate questions. In clarifying question ranking stage, we reconstruct the training dataset and propose two models based on ELECTRA. Finally we ensemble the models by summing up their output probabilities and choose the question with the highest probability as the clarification question. Experiments show that our ensemble ranking model outperforms in the document relevance task and achieves the best recall@[20,30] metrics in question relevance task.
Harmonious Hashing
Xu, Bin (Zhejiang University) | Bu, Jiajun (Zhejiang University) | Lin, Yue (Zhejiang University) | Chen, Chun (Zhejiang University) | He, Xiaofei (Zhejiang University) | Cai, Deng (Zhejiang University)
Hashing-based fast nearest neighbor search technique has attracted great attention in both research and industry areas recently.Many existing hashing approaches encode data with projection-based hash functions and represent each projected dimension by 1-bit.However, the dimensions with high variance hold large energy or information of data but treated equivalently as dimensions with low variance,which leads to a serious information loss.In this paper, we introduce a novel hashing algorithm called Harmonious Hashing which aims at learning hash functions with low information loss.Specifically, we learn a set of optimized projections to preserve the maximum cumulative energy and meet the constraint of equivalent variance on each dimension as much as possible.In this way, we could minimize the information loss after binarization.Despite the extreme simplicity, our method outperforms superiorly to many state-of-the-art hashing methods in large-scale and high-dimensional nearest neighbor search experiments.
Random Projection with Filtering for Nearly Duplicate Search
Lin, Yue (Zhejiang University) | Jin, Rong (Michigan State University) | Cai, Deng (Zhejiang University) | He, Xiaofei (Zhejiang University)
High dimensional nearest neighbor search is a fundamental problem and has found applications in many domains. Although many hashing based approaches have been proposed for approximate nearest neighbor search in high dimensional space, one main drawback is that they often return many false positives that need to be filtered out by a post procedure. We propose a novel method to address this limitation in this paper. The key idea is to introduce a filtering procedure within the search algorithm, based on the compressed sensing theory, that effectively removes the false positive answers. We first obtain a sparse representation for each data point by the landmark based approach, after which we solve the nearly duplicate search that the difference between the query and its nearest neighbors forms a sparse vector living in a small ℓp ball, where p ≤ 1. Our empirical study on real-world datasets demonstrates the effectiveness of the proposed approach compared to the state-of-the-art hashing methods.