Lin, Yong
Goedel-Prover: A Frontier Model for Open-Source Automated Theorem Proving
Lin, Yong, Tang, Shange, Lyu, Bohan, Wu, Jiayun, Lin, Hongzhou, Yang, Kaiyu, Li, Jia, Xia, Mengzhou, Chen, Danqi, Arora, Sanjeev, Jin, Chi
We introduce Goedel-Prover, an open-source large language model (LLM) that achieves the state-of-the-art (SOTA) performance in automated formal proof generation for mathematical problems. The key challenge in this field is the scarcity of formalized math statements and proofs, which we tackle in the following ways. We train statement formalizers to translate the natural language math problems from Numina into formal language (Lean 4), creating a dataset of 1.64 million formal statements. LLMs are used to check that the formal statements accurately preserve the content of the original natural language problems. We then iteratively build a large dataset of formal proofs by training a series of provers. Each prover succeeds in proving many statements that the previous ones could not, and these new proofs are added to the training set for the next prover. Despite using only supervised fine-tuning, our final prover significantly outperforms the previous best open-source model, DeepSeek-Prover-V1.5, which employs reinforcement learning. On the miniF2F benchmark, our model achieves a success rate of 57.6% (Pass@32), surpassing DeepSeek-Prover-V1.5 by 7.6%. On PutnamBench, Goedel-Prover successfully solves 7 problems (Pass@512), ranking first on the leaderboard. Furthermore, it generates 29.7K formal proofs for Lean Workbook problems, nearly doubling the 15.7K produced by earlier works.
Rethinking Mixture-of-Agents: Is Mixing Different Large Language Models Beneficial?
Li, Wenzhe, Lin, Yong, Xia, Mengzhou, Jin, Chi
Ensembling outputs from diverse sources is a straightforward yet effective approach to boost performance. Mixture-of-Agents (MoA) is one such popular ensemble method that aggregates outputs from multiple different Large Language Models (LLMs). This paper raises the question in the context of language models: is mixing different LLMs truly beneficial? We propose Self-MoA -- an ensemble method that aggregates outputs from only the single top-performing LLM. Our extensive experiments reveal that, surprisingly, Self-MoA outperforms standard MoA that mixes different LLMs in a large number of scenarios: Self-MoA achieves $6.6\%$ improvement over MoA on the AlpacaEval 2.0 benchmark, and an average of $3.8\%$ improvement across various benchmarks, including MMLU, CRUX, and MATH. Applying Self-MoA to one of the top-ranking models in AlpacaEval 2.0 directly achieves the new state-of-the-art performance on the leaderboard. To understand the effectiveness of Self-MoA, we systematically investigate the trade-off between diversity and quality of outputs under various MoA settings. We confirm that the MoA performance is rather sensitive to the quality, and mixing different LLMs often lowers the average quality of the models. To complement the study, we identify the scenarios where mixing different LLMs could be helpful. This paper further introduces a sequential version of Self-MoA, that is capable of aggregating a large number of LLM outputs on-the-fly over multiple rounds, and is as effective as aggregating all outputs at once.
Entropy-Regularized Process Reward Model
Zhang, Hanning, Wang, Pengcheng, Diao, Shizhe, Lin, Yong, Pan, Rui, Dong, Hanze, Zhang, Dylan, Molchanov, Pavlo, Zhang, Tong
Large language models (LLMs) have shown promise in performing complex multi-step reasoning, yet they continue to struggle with mathematical reasoning, often making systematic errors. A promising solution is reinforcement learning (RL) guided by reward models, particularly those focusing on process rewards, which score each intermediate step rather than solely evaluating the final outcome. This approach is more effective at guiding policy models towards correct reasoning trajectories. In this work, we propose an entropy-regularized process reward model (ER-PRM) that integrates KL-regularized Markov Decision Processes (MDP) to balance policy optimization with the need to prevent the policy from shifting too far from its initial distribution. We derive a novel reward construction method based on the theoretical results. Our theoretical analysis shows that we could derive the optimal reward model from the initial policy sampling. Our empirical experiments on the MATH and GSM8K benchmarks demonstrate that ER-PRM consistently outperforms existing process reward models, achieving 1% improvement on GSM8K and 2-3% improvement on MATH under best-of-N evaluation, and more than 1% improvement under RLHF. These results highlight the efficacy of entropy-regularization in enhancing LLMs' reasoning capabilities.
Regularizing Hidden States Enables Learning Generalizable Reward Model for LLMs
Yang, Rui, Ding, Ruomeng, Lin, Yong, Zhang, Huan, Zhang, Tong
Reward models trained on human preference data have been proven to be effective for aligning Large Language Models (LLMs) with human intent within the reinforcement learning from human feedback (RLHF) framework. However, the generalization capabilities of current reward models to unseen prompts and responses are limited. This limitation can lead to an unexpected phenomenon known as reward over-optimization, where excessive optimization of rewards results in a decline in actual performance. While previous research has advocated for constraining policy optimization, our study proposes a novel approach to enhance the reward model's generalization ability against distribution shifts by regularizing the hidden states. Specifically, we retain the base model's language model head and incorporate a suite of text-generation losses to preserve the hidden states' text generation capabilities, while concurrently learning a reward head behind the same hidden states. Our experimental results demonstrate that the introduced regularization technique markedly improves the accuracy of learned reward models across a variety of out-of-distribution (OOD) tasks and effectively alleviate the over-optimization issue in RLHF, offering a more reliable and robust preference learning paradigm.
On the Benefits of Over-parameterization for Out-of-Distribution Generalization
Hao, Yifan, Lin, Yong, Zou, Difan, Zhang, Tong
In recent years, machine learning models have achieved success based on the independently and identically distributed assumption. However, this assumption can be easily violated in real-world applications, leading to the Out-of-Distribution (OOD) problem. Understanding how modern over-parameterized DNNs behave under non-trivial natural distributional shifts is essential, as current theoretical understanding is insufficient. Existing theoretical works often provide meaningless results for over-parameterized models in OOD scenarios or even contradict empirical findings. To this end, we are investigating the performance of the over-parameterized model in terms of OOD generalization under the general benign overfitting conditions. Our analysis focuses on a random feature model and examines non-trivial natural distributional shifts, where the benign overfitting estimators demonstrate a constant excess OOD loss, despite achieving zero excess in-distribution (ID) loss. We demonstrate that in this scenario, further increasing the model's parameterization can significantly reduce the OOD loss. Intuitively, the variance term of ID loss remains low due to orthogonality of long-tail features, meaning overfitting noise during training generally doesn't raise testing loss. However, in OOD cases, distributional shift increases the variance term. Thankfully, the inherent shift is unrelated to individual x, maintaining the orthogonality of long-tail features. Expanding the hidden dimension can additionally improve this orthogonality by mapping the features into higher-dimensional spaces, thereby reducing the variance term. We further show that model ensembles also improve OOD loss, akin to increasing model capacity. These insights explain the empirical phenomenon of enhanced OOD generalization through model ensembles, supported by consistent simulations with theoretical results.
Do CLIPs Always Generalize Better than ImageNet Models?
Wang, Qizhou, Lin, Yong, Chen, Yongqiang, Schmidt, Ludwig, Han, Bo, Zhang, Tong
Large vision language models, such as CLIPs, have revolutionized modern machine learning. CLIPs have demonstrated great generalizability under distribution shifts, supported by an increasing body of literature. However, the evaluation datasets for CLIPs are variations primarily designed for ImageNet benchmarks, which may not fully reflect the extent to which CLIPs, e.g., pre-trained on LAION, robust to spurious correlations. To bridge the gap, we collect a real-world dataset called CounterAnimal that contains realistic spurious features found in animal photos. CounterAnimal consists of a) the common group: comprising animals on common backgrounds, and b) the counter group: including animals on unusual backgrounds. The performance drops from the common to counter groups quantify the reliance of models on spurious features (i.e., backgrounds) to predict the animals. We find that CLIPs trained on either LAION or the OpenAI data exhibit notable performance drops on the counter group. Surprisingly, we observe that single-modal models trained on ImageNet are more robust than CLIPs. We provide both theoretical and empirical explanations for why CLIPs still learn spurious features. Our findings suggest that distribution shifts remain an open problem for CLIPs, and one needs to be cautious about test setups when evaluating foundation models pre-trained on a significantly different scale and distribution.
Arithmetic Control of LLMs for Diverse User Preferences: Directional Preference Alignment with Multi-Objective Rewards
Wang, Haoxiang, Lin, Yong, Xiong, Wei, Yang, Rui, Diao, Shizhe, Qiu, Shuang, Zhao, Han, Zhang, Tong
Fine-grained control over large language models (LLMs) remains a significant challenge, hindering their adaptability to diverse user needs. While Reinforcement Learning from Human Feedback (RLHF) shows promise in aligning LLMs, its reliance on scalar rewards often limits its ability to capture diverse user preferences in real-world applications. To address this limitation, we introduce the Directional Preference Alignment (DPA) framework. Unlike the scalar-reward RLHF, DPA incorporates multi-objective reward modeling to represent diverse preference profiles. Additionally, DPA models user preferences as directions (i.e., unit vectors) in the reward space to achieve user-dependent preference control. Our method involves training a multi-objective reward model and then fine-tuning the LLM with a preference-conditioned variant of Rejection Sampling Finetuning (RSF), an RLHF method adopted by Llama 2. This method enjoys a better performance trade-off across various reward objectives. In comparison with the scalar-reward RLHF, DPA offers users intuitive control over LLM generation: they can arithmetically specify their desired trade-offs (e.g., more helpfulness with less verbosity). We also validate the effectiveness of DPA with real-world alignment experiments on Mistral-7B. Our method provides straightforward arithmetic control over the trade-off between helpfulness and verbosity while maintaining competitive performance with strong baselines such as Direct Preference Optimization (DPO).
The Instinctive Bias: Spurious Images lead to Hallucination in MLLMs
Han, Tianyang, Lian, Qing, Pan, Rui, Pi, Renjie, Zhang, Jipeng, Diao, Shizhe, Lin, Yong, Zhang, Tong
Large language models (LLMs) have recently experienced remarkable progress, where the advent of multi-modal large language models (MLLMs) has endowed LLMs with visual capabilities, leading to impressive performances in various multi-modal tasks. However, those powerful MLLMs such as GPT-4V still fail spectacularly when presented with certain image and text inputs. In this paper, we identify a typical class of inputs that baffles MLLMs, which consist of images that are highly relevant but inconsistent with answers, causing MLLMs to suffer from hallucination. To quantify the effect, we propose CorrelationQA, the first benchmark that assesses the hallucination level given spurious images. This benchmark contains 7,308 text-image pairs across 13 categories. Based on the proposed CorrelationQA, we conduct a thorough analysis on 9 mainstream MLLMs, illustrating that they universally suffer from this instinctive bias to varying degrees. We hope that our curated benchmark and evaluation results aid in better assessments of the MLLMs' robustness in the presence of misleading images. The resource is available in https://github.com/MasaiahHan/CorrelationQA.
Mitigating the Alignment Tax of RLHF
Lin, Yong, Lin, Hangyu, Xiong, Wei, Diao, Shizhe, Liu, Jianmeng, Zhang, Jipeng, Pan, Rui, Wang, Haoxiang, Hu, Wenbin, Zhang, Hanning, Dong, Hanze, Pi, Renjie, Zhao, Han, Jiang, Nan, Ji, Heng, Yao, Yuan, Zhang, Tong
LLMs acquire a wide range of abilities during pre-training, but aligning LLMs under Reinforcement Learning with Human Feedback (RLHF) can lead to forgetting, which is also known as the alignment tax. To empirically verify this hypothesis, we conducted experiments with existing RLHF algorithms using OpenLLaMA-3B, which revealed a pronounced alignment tax in NLP tasks. On the other hand, despite various techniques to mitigate forgetting, they are often at odds with the RLHF performance, leading to a trade-off between reward maximization and forgetting mitigation. In light of the above pressing issue in aligning LLMs, in this paper we explore model averaging, which interpolates between pre and post RLHF model weights, to achieve a more efficient reward-tax Pareto front. To understand its effectiveness, We offer theoretical insights into model averaging, revealing that it enhances performance Pareto front by increasing feature diversity on the layers where tasks share overlapped feature spaces. Empirical evidence corroborates our analysis by showing the benefits of averaging low-level transformer layers. Building on the analysis and the observation that averaging different layers of the transformer leads to significantly different reward-tax trade-offs, we propose Adaptive Model Averaging (AMA) to adaptively find various combination ratios of model layers. AMA seeks to maximize the alignment reward while incurring minimal alignment tax. Moreover, we validate AMA's performance across a range of RLHF algorithms over OpenLLaMA-3B and further extend our findings to Mistral-7B.
R-Tuning: Teaching Large Language Models to Refuse Unknown Questions
Zhang, Hanning, Diao, Shizhe, Lin, Yong, Fung, Yi R., Lian, Qing, Wang, Xingyao, Chen, Yangyi, Ji, Heng, Zhang, Tong
Large language models (LLMs) have revolutionized numerous domains with their impressive performance but still face their challenges. A predominant issue is the propensity for these models to generate non-existent facts, a concern termed hallucination. Our research is motivated by the observation that previous instruction tuning methods force the model to complete a sentence no matter whether the model knows the knowledge or not. When the question is out of the parametric knowledge, it will try to make up something and fail to indicate when it lacks knowledge. In this paper, we present a new approach called Refusal-Aware Instruction Tuning (R-Tuning). This approach is formalized by first identifying the knowledge gap between parametric knowledge and the instruction tuning data. Then, we construct the refusal-aware data based on the knowledge intersection, to tune LLMs to refrain from responding to questions beyond its parametric knowledge. Experimental results demonstrate this new instruction tuning approach effectively improves a model's ability to answer known questions and refrain from answering unknown questions. Furthermore, when tested on out-of-domain datasets, the refusal ability was found to be a meta-skill that could be generalized to other tasks. Further analysis surprisingly finds that learning the uncertainty during training displays a better ability to estimate uncertainty than uncertainty-based testing. Our code will be released at https://github.com/shizhediao/R-Tuning.