Goto

Collaborating Authors

 Lin, Yiming


LLM-Powered Proactive Data Systems

arXiv.org Artificial Intelligence

With the power of LLMs, we now have the ability to query data that was previously impossible to query, including text, images, and video. However, despite this enormous potential, most present-day data systems that leverage LLMs are reactive, reflecting our community's desire to map LLMs to known abstractions. Most data systems treat LLMs as an opaque black box that operates on user inputs and data as is, optimizing them much like any other approximate, expensive UDFs, in conjunction with other relational operators. Such data systems do as they are told, but fail to understand and leverage what the LLM is being asked to do (i.e. the underlying operations, which may be error-prone), the data the LLM is operating on (e.g., long, complex documents), or what the user really needs. They don't take advantage of the characteristics of the operations and/or the data at hand, or ensure correctness of results when there are imprecisions and ambiguities. We argue that data systems instead need to be proactive: they need to be given more agency -- armed with the power of LLMs -- to understand and rework the user inputs and the data and to make decisions on how the operations and the data should be represented and processed. By allowing the data system to parse, rewrite, and decompose user inputs and data, or to interact with the user in ways that go beyond the standard single-shot query-result paradigm, the data system is able to address user needs more efficiently and effectively. These new capabilities lead to a rich design space where the data system takes more initiative: they are empowered to perform optimization based on the transformation operations, data characteristics, and user intent. We discuss various successful examples of how this framework has been and can be applied in real-world tasks, and present future directions for this ambitious research agenda.


Context Does Matter: End-to-end Panoptic Narrative Grounding with Deformable Attention Refined Matching Network

arXiv.org Artificial Intelligence

Panoramic Narrative Grounding (PNG) is an emerging visual grounding task that aims to segment visual objects in images based on dense narrative captions. The current state-of-the-art methods first refine the representation of phrase by aggregating the most similar $k$ image pixels, and then match the refined text representations with the pixels of the image feature map to generate segmentation results. However, simply aggregating sampled image features ignores the contextual information, which can lead to phrase-to-pixel mis-match. In this paper, we propose a novel learning framework called Deformable Attention Refined Matching Network (DRMN), whose main idea is to bring deformable attention in the iterative process of feature learning to incorporate essential context information of different scales of pixels. DRMN iteratively re-encodes pixels with the deformable attention network after updating the feature representation of the top-$k$ most similar pixels. As such, DRMN can lead to accurate yet discriminative pixel representations, purify the top-$k$ most similar pixels, and consequently alleviate the phrase-to-pixel mis-match substantially.Experimental results show that our novel design significantly improves the matching results between text phrases and image pixels. Concretely, DRMN achieves new state-of-the-art performance on the PNG benchmark with an average recall improvement 3.5%. The codes are available in: https://github.com/JaMesLiMers/DRMN.