Lin, Wei-I
libcll: an Extendable Python Toolkit for Complementary-Label Learning
Ye, Nai-Xuan, Mai, Tan-Ha, Wang, Hsiu-Hsuan, Lin, Wei-I, Lin, Hsuan-Tien
Complementary-label learning (CLL) is a weakly supervised learning paradigm for multiclass classification, where only complementary labels -- indicating classes an instance does not belong to -- are provided to the learning algorithm. Despite CLL's increasing popularity, previous studies highlight two main challenges: (1) inconsistent results arising from varied assumptions on complementary label generation, and (2) high barriers to entry due to the lack of a standardized evaluation platform across datasets and algorithms. To address these challenges, we introduce \texttt{libcll}, an extensible Python toolkit for CLL research. \texttt{libcll} provides a universal interface that supports a wide range of generation assumptions, both synthetic and real-world datasets, and key CLL algorithms. The toolkit is designed to mitigate inconsistencies and streamline the research process, with easy installation, comprehensive usage guides, and quickstart tutorials that facilitate efficient adoption and implementation of CLL techniques. Extensive ablation studies conducted with \texttt{libcll} demonstrate its utility in generating valuable insights to advance future CLL research.
CLCIFAR: CIFAR-Derived Benchmark Datasets with Human Annotated Complementary Labels
Wang, Hsiu-Hsuan, Lin, Wei-I, Lin, Hsuan-Tien
Complementary-label learning (CLL) is a weakly-supervised learning paradigm that aims to train a multi-class classifier using only complementary labels, which indicate classes to which an instance does not belong. Despite numerous algorithmic proposals for CLL, their practical performance remains unclear for two reasons. Firstly, these algorithms often rely on assumptions about the generation of complementary labels. Secondly, their evaluation has been limited to synthetic datasets. To gain insights into the real-world performance of CLL algorithms, we developed a protocol to collect complementary labels annotated by human annotators. This effort resulted in the creation of two datasets, CLCIFAR10 and CLCIFAR20, derived from CIFAR10 and CIFAR100, respectively. These datasets, publicly released at https://github.com/ntucllab/complementary_cifar, represent the very first real-world CLL datasets. Through extensive benchmark experiments, we discovered a notable decline in performance when transitioning from synthetic datasets to real-world datasets. We conducted a dataset-level ablation study to investigate the key factors contributing to this decline. Our analyses highlighted annotation noise as the most influential factor present in the real-world datasets. Additionally, the biased nature of human-annotated complementary labels was found to make certain CLL algorithms more susceptible to overfitting. These findings suggest the community to spend more research effort on developing CLL algorithms that are robust to noisy and biased complementary-label distributions.
Enhancing Label Sharing Efficiency in Complementary-Label Learning with Label Augmentation
Lin, Wei-I, Niu, Gang, Lin, Hsuan-Tien, Sugiyama, Masashi
Complementary-label Learning (CLL) is a form of weakly supervised learning that trains an ordinary classifier using only complementary labels, which are the classes that certain instances do not belong to. While existing CLL studies typically use novel loss functions or training techniques to solve this problem, few studies focus on how complementary labels collectively provide information to train the ordinary classifier. In this paper, we fill the gap by analyzing the implicit sharing of complementary labels on nearby instances during training. Our analysis reveals that the efficiency of implicit label sharing is closely related to the performance of existing CLL models. Based on this analysis, we propose a novel technique that enhances the sharing efficiency via complementary-label augmentation, which explicitly propagates additional complementary labels to each instance. We carefully design the augmentation process to enrich the data with new and accurate complementary labels, which provide CLL models with fresh and valuable information to enhance the sharing efficiency. We then verify our proposed technique by conducting thorough experiments on both synthetic and real-world datasets. Our results confirm that complementary-label augmentation can systematically improve empirical performance over state-of-the-art CLL models.
Reduction from Complementary-Label Learning to Probability Estimates
Lin, Wei-I, Lin, Hsuan-Tien
Complementary-Label Learning (CLL) is a weakly-supervised learning problem that aims to learn a multi-class classifier from only complementary labels, which indicate a class to which an instance does not belong. Existing approaches mainly adopt the paradigm of reduction to ordinary classification, which applies specific transformations and surrogate losses to connect CLL back to ordinary classification. Those approaches, however, face several limitations, such as the tendency to overfit or be hooked on deep models. In this paper, we sidestep those limitations with a novel perspective--reduction to probability estimates of complementary classes. We prove that accurate probability estimates of complementary labels lead to good classifiers through a simple decoding step. The proof establishes a reduction framework from CLL to probability estimates. The framework offers explanations of several key CLL approaches as its special cases and allows us to design an improved algorithm that is more robust in noisy environments. The framework also suggests a validation procedure based on the quality of probability estimates, leading to an alternative way to validate models with only complementary labels. The flexible framework opens a wide range of unexplored opportunities in using deep and non-deep models for probability estimates to solve the CLL problem. Empirical experiments further verified the framework's efficacy and robustness in various settings.