Lin, Ting-En
A Survey of Direct Preference Optimization
Liu, Shunyu, Fang, Wenkai, Hu, Zetian, Zhang, Junjie, Zhou, Yang, Zhang, Kongcheng, Tu, Rongcheng, Lin, Ting-En, Huang, Fei, Song, Mingli, Li, Yongbin, Tao, Dacheng
Large Language Models (LLMs) have demonstrated unprecedented generative capabilities, yet their alignment with human values remains critical for ensuring helpful and harmless deployments. While Reinforcement Learning from Human Feedback (RLHF) has emerged as a powerful paradigm for aligning LLMs with human preferences, its reliance on complex reward modeling introduces inherent trade-offs in computational efficiency and training stability. In this context, Direct Preference Optimization (DPO) has recently gained prominence as a streamlined alternative that directly optimizes LLMs using human preferences, thereby circumventing the need for explicit reward modeling. Owing to its theoretical elegance and computational efficiency, DPO has rapidly attracted substantial research efforts exploring its various implementations and applications. However, this field currently lacks systematic organization and comparative analysis. In this survey, we conduct a comprehensive overview of DPO and introduce a novel taxonomy, categorizing previous works into four key dimensions: data strategy, learning framework, constraint mechanism, and model property. We further present a rigorous empirical analysis of DPO variants across standardized benchmarks. Additionally, we discuss real-world applications, open challenges, and future directions for DPO. This work delivers both a conceptual framework for understanding DPO and practical guidance for practitioners, aiming to advance robust and generalizable alignment paradigms. All collected resources are available and will be continuously updated at https://github.com/liushunyu/awesome-direct-preference-optimization.
OpenOmni: Large Language Models Pivot Zero-shot Omnimodal Alignment across Language with Real-time Self-Aware Emotional Speech Synthesis
Luo, Run, Lin, Ting-En, Zhang, Haonan, Wu, Yuchuan, Liu, Xiong, Yang, Min, Li, Yongbin, Chen, Longze, Li, Jiaming, Zhang, Lei, Chen, Yangyi, Alinejad-Rokny, Hamid, Huang, Fei
Recent advancements in omnimodal learning have been achieved in understanding and generation across images, text, and speech, though mainly within proprietary models. Limited omnimodal datasets and the inherent challenges associated with real-time emotional speech generation have hindered open-source progress. To address these issues, we propose openomni, a two-stage training method combining omnimodal alignment and speech generation to develop a state-of-the-art omnimodal large language model. In the alignment phase, a pre-trained speech model is further trained on text-image tasks to generalize from vision to speech in a (near) zero-shot manner, outperforming models trained on tri-modal datasets. In the speech generation phase, a lightweight decoder facilitates real-time emotional speech through training on speech tasks and preference learning. Experiments demonstrate that openomni consistently improves across omnimodal, vision-language, and speech-language evaluations, enabling natural, emotion-rich dialogues and real-time emotional speech generation.
Masked Thought: Simply Masking Partial Reasoning Steps Can Improve Mathematical Reasoning Learning of Language Models
Chen, Changyu, Wang, Xiting, Lin, Ting-En, Lv, Ang, Wu, Yuchuan, Gao, Xin, Wen, Ji-Rong, Yan, Rui, Li, Yongbin
In reasoning tasks, even a minor error can cascade into inaccurate results, leading to suboptimal performance of large language models in such domains. Earlier fine-tuning approaches sought to mitigate this by leveraging more precise supervisory signals from human labeling, larger models, or self-sampling, although at a high cost. Conversely, we develop a method that avoids external resources, relying instead on introducing perturbations to the input. Our training approach randomly masks certain tokens within the chain of thought, a technique we found to be particularly effective for reasoning tasks. When applied to fine-tuning with GSM8K on Llama-2-7B, this method achieved a 5\% improvement in GSM8K accuracy and a 10\% improvement in GSM-IC accuracy over standard supervised fine-tuning with a few codes modified. Furthermore, it is complementary to existing methods. When integrated with related explicit data augmentation methods, it leads to improvements across five datasets of various augmentation methods, as well as two different base models. We further investigate the mechanisms behind this improvement through case studies and quantitative analysis, suggesting that our approach may provide superior support for the model in capturing long-distance dependencies, especially those related to questions. This enhancement could deepen understanding of the premises in questions and prior steps. Our code is available at Github.
A Survey on Self-Evolution of Large Language Models
Tao, Zhengwei, Lin, Ting-En, Chen, Xiancai, Li, Hangyu, Wu, Yuchuan, Li, Yongbin, Jin, Zhi, Huang, Fei, Tao, Dacheng, Zhou, Jingren
Large language models (LLMs) have significantly advanced in various fields and intelligent agent applications. However, current LLMs that learn from human or external model supervision are costly and may face performance ceilings as task complexity and diversity increase. To address this issue, self-evolution approaches that enable LLM to autonomously acquire, refine, and learn from experiences generated by the model itself are rapidly growing. This new training paradigm inspired by the human experiential learning process offers the potential to scale LLMs towards superintelligence. In this work, we present a comprehensive survey of self-evolution approaches in LLMs. We first propose a conceptual framework for self-evolution and outline the evolving process as iterative cycles composed of four phases: experience acquisition, experience refinement, updating, and evaluation. Second, we categorize the evolution objectives of LLMs and LLM-based agents; then, we summarize the literature and provide taxonomy and insights for each module. Lastly, we pinpoint existing challenges and propose future directions to improve self-evolution frameworks, equipping researchers with critical insights to fast-track the development of self-evolving LLMs. Our corresponding GitHub repository is available at https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/Awesome-Self-Evolution-of-LLM
Fortify the Shortest Stave in Attention: Enhancing Context Awareness of Large Language Models for Effective Tool Use
Chen, Yuhan, Lv, Ang, Lin, Ting-En, Chen, Changyu, Wu, Yuchuan, Huang, Fei, Li, Yongbin, Yan, Rui
Recent advancements in large language models (LLMs) have significantly expanded their functionality and skills as tool agents. In this paper, we argue that a waveform pattern in the model's attention allocation has an impact on the tool use performance, which degrades when the position of essential information hits the trough zone. To address this issue, we propose a novel inference method named Attention Buckets. This approach enables LLMs to handle context by conducting parallel processes, each featuring a unique RoPE angle base that shapes the attention waveform. Attention Buckets ensures that an attention trough of a particular process can be compensated with an attention peak of another run, reducing the risk of the LLM missing essential information residing within the attention trough. Our extensive experiments on the widely recognized tool use benchmark demonstrate the efficacy of our approach, where a 7B-parameter open-source model enhanced by Attention Buckets achieves SOTA performance on par with GPT-4.
Improving Factual Consistency of Text Summarization by Adversarially Decoupling Comprehension and Embellishment Abilities of LLMs
Feng, Huawen, Fan, Yan, Liu, Xiong, Lin, Ting-En, Yao, Zekun, Wu, Yuchuan, Huang, Fei, Li, Yongbin, Ma, Qianli
Despite the recent progress in text summarization made by large language models (LLMs), they often generate summaries that are factually inconsistent with original articles, known as "hallucinations" in text generation. Unlike previous small models (e.g., BART, T5), current LLMs make fewer silly mistakes but more sophisticated ones, such as imposing cause and effect, adding false details, overgeneralizing, etc. These hallucinations are challenging to detect through traditional methods, which poses great challenges for improving the factual consistency of text summarization. In this paper, we propose an adversarially DEcoupling method to disentangle the Comprehension and EmbellishmeNT abilities of LLMs (DECENT). Furthermore, we adopt a probing-based efficient training to cover the shortage of sensitivity for true and false in the training process of LLMs. In this way, LLMs are less confused about embellishing and understanding; thus, they can execute the instructions more accurately and have enhanced abilities to distinguish hallucinations. Experimental results show that DECENT significantly improves the reliability of text summarization based on LLMs.
SpokenWOZ: A Large-Scale Speech-Text Benchmark for Spoken Task-Oriented Dialogue Agents
Si, Shuzheng, Ma, Wentao, Gao, Haoyu, Wu, Yuchuan, Lin, Ting-En, Dai, Yinpei, Li, Hangyu, Yan, Rui, Huang, Fei, Li, Yongbin
Task-oriented dialogue (TOD) models have made significant progress in recent years. However, previous studies primarily focus on datasets written by annotators, which has resulted in a gap between academic research and real-world spoken conversation scenarios. While several small-scale spoken TOD datasets are proposed to address robustness issues such as ASR errors, they ignore the unique challenges in spoken conversation. To tackle the limitations, we introduce SpokenWOZ, a large-scale speech-text dataset for spoken TOD, containing 8 domains, 203k turns, 5.7k dialogues and 249 hours of audios from human-to-human spoken conversations. SpokenWOZ further incorporates common spoken characteristics such as word-by-word processing and reasoning in spoken language. Based on these characteristics, we present cross-turn slot and reasoning slot detection as new challenges. We conduct experiments on various baselines, including text-modal models, newly proposed dual-modal models, and LLMs, e.g., ChatGPT. The results show that the current models still have substantial room for improvement in spoken conversation, where the most advanced dialogue state tracker only achieves 25.65% in joint goal accuracy and the SOTA end-to-end model only correctly completes the user request in 52.1% of dialogues.
Constructive Large Language Models Alignment with Diverse Feedback
Yu, Tianshu, Lin, Ting-En, Wu, Yuchuan, Yang, Min, Huang, Fei, Li, Yongbin
In recent research on large language models (LLMs), there has been a growing emphasis on aligning these models with human values to reduce the impact of harmful content. However, current alignment methods often rely solely on singular forms of human feedback, such as preferences, annotated labels, or natural language critiques, overlooking the potential advantages of combining these feedback types. This limitation leads to suboptimal performance, even when ample training data is available. In this paper, we introduce Constructive and Diverse Feedback (CDF) as a novel method to enhance LLM alignment, inspired by constructivist learning theory. Our approach involves collecting three distinct types of feedback tailored to problems of varying difficulty levels within the training dataset. Specifically, we exploit critique feedback for easy problems, refinement feedback for medium problems, and preference feedback for hard problems. By training our model with this diversified feedback, we achieve enhanced alignment performance while using less training data. To assess the effectiveness of CDF, we evaluate it against previous methods in three downstream tasks: question answering, dialog generation, and text summarization. Experimental results demonstrate that CDF achieves superior performance even with a smaller training dataset.
Self-Explanation Prompting Improves Dialogue Understanding in Large Language Models
Gao, Haoyu, Lin, Ting-En, Li, Hangyu, Yang, Min, Wu, Yuchuan, Ma, Wentao, Li, Yongbin
Task-oriented dialogue (TOD) systems facilitate users in executing various activities via multi-turn dialogues, but Large Language Models (LLMs) often struggle to comprehend these intricate contexts. In this study, we propose a novel "Self-Explanation" prompting strategy to enhance the comprehension abilities of LLMs in multi-turn dialogues. This task-agnostic approach requires the model to analyze each dialogue utterance before task execution, thereby improving performance across various dialogue-centric tasks. Experimental results from six benchmark datasets confirm that our method consistently outperforms other zero-shot prompts and matches or exceeds the efficacy of few-shot prompts, demonstrating its potential as a powerful tool in enhancing LLMs' comprehension in complex dialogue tasks.
UniSA: Unified Generative Framework for Sentiment Analysis
Li, Zaijing, Lin, Ting-En, Wu, Yuchuan, Liu, Meng, Tang, Fengxiao, Zhao, Ming, Li, Yongbin
Sentiment analysis is a crucial task that aims to understand people's emotional states and predict emotional categories based on multimodal information. It consists of several subtasks, such as emotion recognition in conversation (ERC), aspect-based sentiment analysis (ABSA), and multimodal sentiment analysis (MSA). However, unifying all subtasks in sentiment analysis presents numerous challenges, including modality alignment, unified input/output forms, and dataset bias. To address these challenges, we propose a Task-Specific Prompt method to jointly model subtasks and introduce a multimodal generative framework called UniSA. Additionally, we organize the benchmark datasets of main subtasks into a new Sentiment Analysis Evaluation benchmark, SAEval. We design novel pre-training tasks and training methods to enable the model to learn generic sentiment knowledge among subtasks to improve the model's multimodal sentiment perception ability. Our experimental results show that UniSA performs comparably to the state-of-the-art on all subtasks and generalizes well to various subtasks in sentiment analysis.