Lin, Shan
SHADE-AD: An LLM-Based Framework for Synthesizing Activity Data of Alzheimer's Patients
Fu, Heming, Chen, Hongkai, Lin, Shan, Xing, Guoliang
Alzheimer's Disease (AD) has become an increasingly critical global health concern, which necessitates effective monitoring solutions in smart health applications. However, the development of such solutions is significantly hindered by the scarcity of AD-specific activity datasets. To address this challenge, we propose SHADE-AD, a Large Language Model (LLM) framework for Synthesizing Human Activity Datasets Embedded with AD features. Leveraging both public datasets and our own collected data from 99 AD patients, SHADE-AD synthesizes human activity videos that specifically represent AD-related behaviors. By employing a three-stage training mechanism, it broadens the range of activities beyond those collected from limited deployment settings. We conducted comprehensive evaluations of the generated dataset, demonstrating significant improvements in downstream tasks such as Human Activity Recognition (HAR) detection, with enhancements of up to 79.69%. Detailed motion metrics between real and synthetic data show strong alignment, validating the realism and utility of the synthesized dataset. These results underscore SHADE-AD's potential to advance smart health applications by providing a cost-effective, privacy-preserving solution for AD monitoring.
Patrol Security Game: Defending Against Adversary with Freedom in Attack Timing, Location, and Duration
Yang, Hao-Tsung, Weng, Ting-Kai, Chang, Ting-Yu, Liu, Kin Sum, Lin, Shan, Gao, Jie, Tsai, Shih-Yu
We explored the Patrol Security Game (PSG), a robotic patrolling problem modeled as an extensive-form Stackelberg game, where the attacker determines the timing, location, and duration of their attack. Our objective is to devise a patrolling schedule with an infinite time horizon that minimizes the attacker's payoff. We demonstrated that PSG can be transformed into a combinatorial minimax problem with a closed-form objective function. By constraining the defender's strategy to a time-homogeneous first-order Markov chain (i.e., the patroller's next move depends solely on their current location), we proved that the optimal solution in cases of zero penalty involves either minimizing the expected hitting time or return time, depending on the attacker model, and that these solutions can be computed efficiently. Additionally, we observed that increasing the randomness in the patrol schedule reduces the attacker's expected payoff in high-penalty cases. However, the minimax problem becomes non-convex in other scenarios. To address this, we formulated a bi-criteria optimization problem incorporating two objectives: expected maximum reward and entropy. We proposed three graph-based algorithms and one deep reinforcement learning model, designed to efficiently balance the trade-off between these two objectives. Notably, the third algorithm can identify the optimal deterministic patrol schedule, though its runtime grows exponentially with the number of patrol spots. Experimental results validate the effectiveness and scalability of our solutions, demonstrating that our approaches outperform state-of-the-art baselines on both synthetic and real-world crime datasets.
SensEmo: Enabling Affective Learning through Real-time Emotion Recognition with Smartwatches
Choksi, Kushan, Chen, Hongkai, Joshi, Karan, Jade, Sukrutha, Nirjon, Shahriar, Lin, Shan
Recent research has demonstrated the capability of physiological signals to infer both user emotional and attention responses. This presents an opportunity for leveraging widely available physiological sensors in smartwatches, to detect real-time emotional cues in users, such as stress and excitement. In this paper, we introduce SensEmo, a smartwatch-based system designed for affective learning. SensEmo utilizes multiple physiological sensor data, including heart rate and galvanic skin response, to recognize a student's motivation and concentration levels during class. This recognition is facilitated by a personalized emotion recognition model that predicts emotional states based on degrees of valence and arousal. With real-time emotion and attention feedback from students, we design a Markov decision process-based algorithm to enhance student learning effectiveness and experience by by offering suggestions to the teacher regarding teaching content and pacing. We evaluate SensEmo with 22 participants in real-world classroom environments. Evaluation results show that SensEmo recognizes student emotion with an average of 88.9% accuracy. More importantly, SensEmo assists students to achieve better online learning outcomes, e.g., an average of 40.0% higher grades in quizzes, over the traditional learning without student emotional feedback.
DROID: A Large-Scale In-The-Wild Robot Manipulation Dataset
Khazatsky, Alexander, Pertsch, Karl, Nair, Suraj, Balakrishna, Ashwin, Dasari, Sudeep, Karamcheti, Siddharth, Nasiriany, Soroush, Srirama, Mohan Kumar, Chen, Lawrence Yunliang, Ellis, Kirsty, Fagan, Peter David, Hejna, Joey, Itkina, Masha, Lepert, Marion, Ma, Yecheng Jason, Miller, Patrick Tree, Wu, Jimmy, Belkhale, Suneel, Dass, Shivin, Ha, Huy, Jain, Arhan, Lee, Abraham, Lee, Youngwoon, Memmel, Marius, Park, Sungjae, Radosavovic, Ilija, Wang, Kaiyuan, Zhan, Albert, Black, Kevin, Chi, Cheng, Hatch, Kyle Beltran, Lin, Shan, Lu, Jingpei, Mercat, Jean, Rehman, Abdul, Sanketi, Pannag R, Sharma, Archit, Simpson, Cody, Vuong, Quan, Walke, Homer Rich, Wulfe, Blake, Xiao, Ted, Yang, Jonathan Heewon, Yavary, Arefeh, Zhao, Tony Z., Agia, Christopher, Baijal, Rohan, Castro, Mateo Guaman, Chen, Daphne, Chen, Qiuyu, Chung, Trinity, Drake, Jaimyn, Foster, Ethan Paul, Gao, Jensen, Herrera, David Antonio, Heo, Minho, Hsu, Kyle, Hu, Jiaheng, Jackson, Donovon, Le, Charlotte, Li, Yunshuang, Lin, Kevin, Lin, Roy, Ma, Zehan, Maddukuri, Abhiram, Mirchandani, Suvir, Morton, Daniel, Nguyen, Tony, O'Neill, Abigail, Scalise, Rosario, Seale, Derick, Son, Victor, Tian, Stephen, Tran, Emi, Wang, Andrew E., Wu, Yilin, Xie, Annie, Yang, Jingyun, Yin, Patrick, Zhang, Yunchu, Bastani, Osbert, Berseth, Glen, Bohg, Jeannette, Goldberg, Ken, Gupta, Abhinav, Gupta, Abhishek, Jayaraman, Dinesh, Lim, Joseph J, Malik, Jitendra, Martรญn-Martรญn, Roberto, Ramamoorthy, Subramanian, Sadigh, Dorsa, Song, Shuran, Wu, Jiajun, Yip, Michael C., Zhu, Yuke, Kollar, Thomas, Levine, Sergey, Finn, Chelsea
The creation of large, diverse, high-quality robot manipulation datasets is an important stepping stone on the path toward more capable and robust robotic manipulation policies. However, creating such datasets is challenging: collecting robot manipulation data in diverse environments poses logistical and safety challenges and requires substantial investments in hardware and human labour. As a result, even the most general robot manipulation policies today are mostly trained on data collected in a small number of environments with limited scene and task diversity. In this work, we introduce DROID (Distributed Robot Interaction Dataset), a diverse robot manipulation dataset with 76k demonstration trajectories or 350 hours of interaction data, collected across 564 scenes and 84 tasks by 50 data collectors in North America, Asia, and Europe over the course of 12 months. We demonstrate that training with DROID leads to policies with higher performance and improved generalization ability. We open source the full dataset, policy learning code, and a detailed guide for reproducing our robot hardware setup.
Tracking Snake-like Robots in the Wild Using Only a Single Camera
Lu, Jingpei, Richter, Florian, Lin, Shan, Yip, Michael C.
Robot navigation within complex environments requires precise state estimation and localization to ensure robust and safe operations. For ambulating mobile robots like robot snakes, traditional methods for sensing require multiple embedded sensors or markers, leading to increased complexity, cost, and increased points of failure. Alternatively, deploying an external camera in the environment is very easy to do, and marker-less state estimation of the robot from this camera's images is an ideal solution: both simple and cost-effective. However, the challenge in this process is in tracking the robot under larger environments where the cameras may be moved around without extrinsic calibration, or maybe when in motion (e.g., a drone following the robot). The scenario itself presents a complex challenge: single-image reconstruction of robot poses under noisy observations. In this paper, we address the problem of tracking ambulatory mobile robots from a single camera. The method combines differentiable rendering with the Kalman filter. This synergy allows for simultaneous estimation of the robot's joint angle and pose while also providing state uncertainty which could be used later on for robust control. We demonstrate the efficacy of our approach on a snake-like robot in both stationary and non-stationary (moving) cameras, validating its performance in both structured and unstructured scenarios. The results achieved show an average error of 0.05 m in localizing the robot's base position and 6 degrees in joint state estimation. We believe this novel technique opens up possibilities for enhanced robot mobility and navigation in future exploratory and search-and-rescue missions.
Real-to-Sim Deformable Object Manipulation: Optimizing Physics Models with Residual Mappings for Robotic Surgery
Liang, Xiao, Liu, Fei, Zhang, Yutong, Li, Yuelei, Lin, Shan, Yip, Michael
Accurate deformable object manipulation (DOM) is essential for achieving autonomy in robotic surgery, where soft tissues are being displaced, stretched, and dissected. Many DOM methods can be powered by simulation, which ensures realistic deformation by adhering to the governing physical constraints and allowing for model prediction and control. However, real soft objects in robotic surgery, such as membranes and soft tissues, have complex, anisotropic physical parameters that a simulation with simple initialization from cameras may not fully capture. To use the simulation techniques in real surgical tasks, the "real-to-sim" gap needs to be properly compensated. In this work, we propose an online, adaptive parameter tuning approach for simulation optimization that (1) bridges the real-to-sim gap between a physics simulation and observations obtained 3D perceptions through estimating a residual mapping and (2) optimizes its stiffness parameters online. Our method ensures a small residual gap between the simulation and observation and improves the simulation's predictive capabilities. The effectiveness of the proposed mechanism is evaluated in the manipulation of both a thin-shell and volumetric tissue, representative of most tissue scenarios. This work contributes to the advancement of simulation-based deformable tissue manipulation and holds potential for improving surgical autonomy.
Biomedical image analysis competitions: The state of current participation practice
Eisenmann, Matthias, Reinke, Annika, Weru, Vivienn, Tizabi, Minu Dietlinde, Isensee, Fabian, Adler, Tim J., Godau, Patrick, Cheplygina, Veronika, Kozubek, Michal, Ali, Sharib, Gupta, Anubha, Kybic, Jan, Noble, Alison, de Solรณrzano, Carlos Ortiz, Pachade, Samiksha, Petitjean, Caroline, Sage, Daniel, Wei, Donglai, Wilden, Elizabeth, Alapatt, Deepak, Andrearczyk, Vincent, Baid, Ujjwal, Bakas, Spyridon, Balu, Niranjan, Bano, Sophia, Bawa, Vivek Singh, Bernal, Jorge, Bodenstedt, Sebastian, Casella, Alessandro, Choi, Jinwook, Commowick, Olivier, Daum, Marie, Depeursinge, Adrien, Dorent, Reuben, Egger, Jan, Eichhorn, Hannah, Engelhardt, Sandy, Ganz, Melanie, Girard, Gabriel, Hansen, Lasse, Heinrich, Mattias, Heller, Nicholas, Hering, Alessa, Huaulmรฉ, Arnaud, Kim, Hyunjeong, Landman, Bennett, Li, Hongwei Bran, Li, Jianning, Ma, Jun, Martel, Anne, Martรญn-Isla, Carlos, Menze, Bjoern, Nwoye, Chinedu Innocent, Oreiller, Valentin, Padoy, Nicolas, Pati, Sarthak, Payette, Kelly, Sudre, Carole, van Wijnen, Kimberlin, Vardazaryan, Armine, Vercauteren, Tom, Wagner, Martin, Wang, Chuanbo, Yap, Moi Hoon, Yu, Zeyun, Yuan, Chun, Zenk, Maximilian, Zia, Aneeq, Zimmerer, David, Bao, Rina, Choi, Chanyeol, Cohen, Andrew, Dzyubachyk, Oleh, Galdran, Adrian, Gan, Tianyuan, Guo, Tianqi, Gupta, Pradyumna, Haithami, Mahmood, Ho, Edward, Jang, Ikbeom, Li, Zhili, Luo, Zhengbo, Lux, Filip, Makrogiannis, Sokratis, Mรผller, Dominik, Oh, Young-tack, Pang, Subeen, Pape, Constantin, Polat, Gorkem, Reed, Charlotte Rosalie, Ryu, Kanghyun, Scherr, Tim, Thambawita, Vajira, Wang, Haoyu, Wang, Xinliang, Xu, Kele, Yeh, Hung, Yeo, Doyeob, Yuan, Yixuan, Zeng, Yan, Zhao, Xin, Abbing, Julian, Adam, Jannes, Adluru, Nagesh, Agethen, Niklas, Ahmed, Salman, Khalil, Yasmina Al, Alenyร , Mireia, Alhoniemi, Esa, An, Chengyang, Anwar, Talha, Arega, Tewodros Weldebirhan, Avisdris, Netanell, Aydogan, Dogu Baran, Bai, Yingbin, Calisto, Maria Baldeon, Basaran, Berke Doga, Beetz, Marcel, Bian, Cheng, Bian, Hao, Blansit, Kevin, Bloch, Louise, Bohnsack, Robert, Bosticardo, Sara, Breen, Jack, Brudfors, Mikael, Brรผngel, Raphael, Cabezas, Mariano, Cacciola, Alberto, Chen, Zhiwei, Chen, Yucong, Chen, Daniel Tianming, Cho, Minjeong, Choi, Min-Kook, Xie, Chuantao Xie Chuantao, Cobzas, Dana, Cohen-Adad, Julien, Acero, Jorge Corral, Das, Sujit Kumar, de Oliveira, Marcela, Deng, Hanqiu, Dong, Guiming, Doorenbos, Lars, Efird, Cory, Escalera, Sergio, Fan, Di, Serj, Mehdi Fatan, Fenneteau, Alexandre, Fidon, Lucas, Filipiak, Patryk, Finzel, Renรฉ, Freitas, Nuno R., Friedrich, Christoph M., Fulton, Mitchell, Gaida, Finn, Galati, Francesco, Galazis, Christoforos, Gan, Chang Hee, Gao, Zheyao, Gao, Shengbo, Gazda, Matej, Gerats, Beerend, Getty, Neil, Gibicar, Adam, Gifford, Ryan, Gohil, Sajan, Grammatikopoulou, Maria, Grzech, Daniel, Gรผley, Orhun, Gรผnnemann, Timo, Guo, Chunxu, Guy, Sylvain, Ha, Heonjin, Han, Luyi, Han, Il Song, Hatamizadeh, Ali, He, Tian, Heo, Jimin, Hitziger, Sebastian, Hong, SeulGi, Hong, SeungBum, Huang, Rian, Huang, Ziyan, Huellebrand, Markus, Huschauer, Stephan, Hussain, Mustaffa, Inubushi, Tomoo, Polat, Ece Isik, Jafaritadi, Mojtaba, Jeong, SeongHun, Jian, Bailiang, Jiang, Yuanhong, Jiang, Zhifan, Jin, Yueming, Joshi, Smriti, Kadkhodamohammadi, Abdolrahim, Kamraoui, Reda Abdellah, Kang, Inha, Kang, Junghwa, Karimi, Davood, Khademi, April, Khan, Muhammad Irfan, Khan, Suleiman A., Khantwal, Rishab, Kim, Kwang-Ju, Kline, Timothy, Kondo, Satoshi, Kontio, Elina, Krenzer, Adrian, Kroviakov, Artem, Kuijf, Hugo, Kumar, Satyadwyoom, La Rosa, Francesco, Lad, Abhi, Lee, Doohee, Lee, Minho, Lena, Chiara, Li, Hao, Li, Ling, Li, Xingyu, Liao, Fuyuan, Liao, KuanLun, Oliveira, Arlindo Limede, Lin, Chaonan, Lin, Shan, Linardos, Akis, Linguraru, Marius George, Liu, Han, Liu, Tao, Liu, Di, Liu, Yanling, Lourenรงo-Silva, Joรฃo, Lu, Jingpei, Lu, Jiangshan, Luengo, Imanol, Lund, Christina B., Luu, Huan Minh, Lv, Yi, Lv, Yi, Macar, Uzay, Maechler, Leon, L., Sina Mansour, Marshall, Kenji, Mazher, Moona, McKinley, Richard, Medela, Alfonso, Meissen, Felix, Meng, Mingyuan, Miller, Dylan, Mirjahanmardi, Seyed Hossein, Mishra, Arnab, Mitha, Samir, Mohy-ud-Din, Hassan, Mok, Tony Chi Wing, Murugesan, Gowtham Krishnan, Karthik, Enamundram Naga, Nalawade, Sahil, Nalepa, Jakub, Naser, Mohamed, Nateghi, Ramin, Naveed, Hammad, Nguyen, Quang-Minh, Quoc, Cuong Nguyen, Nichyporuk, Brennan, Oliveira, Bruno, Owen, David, Pal, Jimut Bahan, Pan, Junwen, Pan, Wentao, Pang, Winnie, Park, Bogyu, Pawar, Vivek, Pawar, Kamlesh, Peven, Michael, Philipp, Lena, Pieciak, Tomasz, Plotka, Szymon, Plutat, Marcel, Pourakpour, Fattaneh, Preloลพnik, Domen, Punithakumar, Kumaradevan, Qayyum, Abdul, Queirรณs, Sandro, Rahmim, Arman, Razavi, Salar, Ren, Jintao, Rezaei, Mina, Rico, Jonathan Adam, Rieu, ZunHyan, Rink, Markus, Roth, Johannes, Ruiz-Gonzalez, Yusely, Saeed, Numan, Saha, Anindo, Salem, Mostafa, Sanchez-Matilla, Ricardo, Schilling, Kurt, Shao, Wei, Shen, Zhiqiang, Shi, Ruize, Shi, Pengcheng, Sobotka, Daniel, Soulier, Thรฉodore, Fadida, Bella Specktor, Stoyanov, Danail, Mun, Timothy Sum Hon, Sun, Xiaowu, Tao, Rong, Thaler, Franz, Thรฉberge, Antoine, Thielke, Felix, Torres, Helena, Wahid, Kareem A., Wang, Jiacheng, Wang, YiFei, Wang, Wei, Wang, Xiong, Wen, Jianhui, Wen, Ning, Wodzinski, Marek, Wu, Ye, Xia, Fangfang, Xiang, Tianqi, Xiaofei, Chen, Xu, Lizhan, Xue, Tingting, Yang, Yuxuan, Yang, Lin, Yao, Kai, Yao, Huifeng, Yazdani, Amirsaeed, Yip, Michael, Yoo, Hwanseung, Yousefirizi, Fereshteh, Yu, Shunkai, Yu, Lei, Zamora, Jonathan, Zeineldin, Ramy Ashraf, Zeng, Dewen, Zhang, Jianpeng, Zhang, Bokai, Zhang, Jiapeng, Zhang, Fan, Zhang, Huahong, Zhao, Zhongchen, Zhao, Zixuan, Zhao, Jiachen, Zhao, Can, Zheng, Qingshuo, Zhi, Yuheng, Zhou, Ziqi, Zou, Baosheng, Maier-Hein, Klaus, Jรคger, Paul F., Kopp-Schneider, Annette, Maier-Hein, Lena
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
ORRN: An ODE-based Recursive Registration Network for Deformable Respiratory Motion Estimation with Lung 4DCT Images
Liang, Xiao, Lin, Shan, Liu, Fei, Schreiber, Dimitri, Yip, Michael
Deformable Image Registration (DIR) plays a significant role in quantifying deformation in medical data. Recent Deep Learning methods have shown promising accuracy and speedup for registering a pair of medical images. However, in 4D (3D + time) medical data, organ motion, such as respiratory motion and heart beating, can not be effectively modeled by pair-wise methods as they were optimized for image pairs but did not consider the organ motion patterns necessary when considering 4D data. This paper presents ORRN, an Ordinary Differential Equations (ODE)-based recursive image registration network. Our network learns to estimate time-varying voxel velocities for an ODE that models deformation in 4D image data. It adopts a recursive registration strategy to progressively estimate a deformation field through ODE integration of voxel velocities. We evaluate the proposed method on two publicly available lung 4DCT datasets, DIRLab and CREATIS, for two tasks: 1) registering all images to the extreme inhale image for 3D+t deformation tracking and 2) registering extreme exhale to inhale phase images. Our method outperforms other learning-based methods in both tasks, producing the smallest Target Registration Error of 1.24mm and 1.26mm, respectively. Additionally, it produces less than 0.001\% unrealistic image folding, and the computation speed is less than 1 second for each CT volume. ORRN demonstrates promising registration accuracy, deformation plausibility, and computation efficiency on group-wise and pair-wise registration tasks. It has significant implications in enabling fast and accurate respiratory motion estimation for treatment planning in radiation therapy or robot motion planning in thoracic needle insertion.
An Ensemble Learning Approach for Exercise Detection in Type 1 Diabetes Patients
Ma, Ke, Chen, Hongkai, Lin, Shan
Type 1 diabetes is a serious disease in which individuals are unable to regulate their blood glucose levels, leading to various medical complications. Artificial pancreas (AP) systems have been developed as a solution for type 1 diabetic patients to mimic the behavior of the pancreas and regulate blood glucose levels. However, current AP systems lack detection capabilities for exercise-induced glucose intake, which can last up to 4 to 8 hours. This incapability can lead to hypoglycemia, which if left untreated, could have serious consequences, including death. Existing exercise detection methods are either limited to single sensor data or use inaccurate models for exercise detection, making them less effective in practice. In this work, we propose an ensemble learning framework that combines a data-driven physiological model and a Siamese network to leverage multiple physiological signal streams for exercise detection with high accuracy. To evaluate the effectiveness of our proposed approach, we utilized a public dataset with 12 diabetic patients collected from an 8-week clinical trial. Our approach achieves a true positive rate for exercise detection of 86.4% and a true negative rate of 99.1%, outperforming state-of-the-art solutions.
CarFi: Rider Localization Using Wi-Fi CSI
Munir, Sirajum, Chen, Hongkai, Fang, Shiwei, Monjur, Mahathir, Lin, Shan, Nirjon, Shahriar
With the rise of hailing services, people are increasingly relying on shared mobility (e.g., Uber, Lyft) drivers to pick up for transportation. However, such drivers and riders have difficulties finding each other in urban areas as GPS signals get blocked by skyscrapers, in crowded environments (e.g., in stadiums, airports, and bars), at night, and in bad weather. It wastes their time, creates a bad user experience, and causes more CO2 emissions due to idle driving. In this work, we explore the potential of Wi-Fi to help drivers to determine the street side of the riders. Our proposed system is called CarFi that uses Wi-Fi CSI from two antennas placed inside a moving vehicle and a data-driven technique to determine the street side of the rider. By collecting real-world data in realistic and challenging settings by blocking the signal with other people and other parked cars, we see that CarFi is 95.44% accurate in rider-side determination in both line of sight (LoS) and non-line of sight (nLoS) conditions, and can be run on an embedded GPU in real-time.